Shaopeng Gao
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shaopeng Gao.
Environmental Science & Technology | 2013
Zhiyuan Cong; Shichang Kang; Shaopeng Gao; Yulan Zhang; Qing Li; Kimitaka Kawamura
Black carbon (BC) is one of the key components causing global warming. Especially on the Tibetan Plateau (TP), reconstructing BCs historical trend is essential for better understanding its anthropogenic impact. Here, we present results from high altitude lake sediments from the central TP. The results provide a unique history of BC over the past 150 years, from the preindustrial to the modern period. Although BC concentration levels in the Nam Co Lake sediments were lower than those from other high mountain lakes, the temporal trend of BC fluxes clearly showed a recent rise, reflecting increased emissions from anthropogenic activities. The BC records were relatively constant until 1900, then began to gradually increase, with a sharp rise beginning around 1960. Recent decades show about 2.5-fold increase of BC compared to the background level. The emission inventory in conjunction with air mass trajectories further demonstrates that BC in the Nam Co Lake region was most likely transported from South Asia. Rapid economic development in South Asia is expected to continue in the next decades; therefore, the influence of BC over the TP merits further investigations.
Environmental Geochemistry and Health | 2011
Chaoliu Li; Shichang Kang; Qianggong Zhang; Shaopeng Gao; Chhatra Mani Sharma
The Yarlung Tsangbo (YT) is a large river running across southern Tibet and has significant effects on its lower reaches, the Ganges–Brahmaputra Basin. In order to investigate the geochemical features of the YT, 18 surface sediment samples were collected; ten trace element concentrations were measured for bulk sediments and two fine grain size fractions. Meanwhile, basic physicochemical parameters and element concentrations of river water were also analyzed. Results indicated that the river water was alkaline (pH 8.42) and that dissolved oxygen was mainly controlled by river water temperature. Some elements (e.g., Zn and Ni) showed close negative relationship to mean grain size of the sediments. Concentrations of most heavy metals, except As of the YT bulk sediments, were similar to those of Upper Crustal Concentration and its lower reaches, indicating almost no anthropogenic impact. Arsenic of the YT sediments was derived fundamentally from the parent rocks of the YT Basin and was far higher than that of its lower reaches. This indicates that relatively small amounts of As from the study area were transported down to the Brahmaputra River under present, relatively dry climatic conditions. However, more YT sediments might have been transported to its low reaches during the Holocene due to the wet climate, giving high As concentration in Holocene sediments of the Ganges–Brahmaputra Basin. Thus, As transported by the YT may produce important influence on the Ganges–Brahmaputra Basin and contribute to its high As concentration in groundwater.
Environmental Science and Pollution Research | 2015
Zhiyuan Cong; Shichang Kang; Yulan Zhang; Shaopeng Gao; Z. F. Wang; Bin Liu; Xin Wan
Our research provides the first complete year-long dataset of wet deposition of trace elements in the high Himalayas based on a total of 42 wet deposition events on the northern slope of Mt. Qomolangma (Everest). Except for typical crustal elements (Al, Fe, and Mn), the concentration level of most trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Cs, Pb, Bi, and U) are generally comparable to those preserved in snow pits and ice cores from the nearby East Rongbuk Glacier. Cadmium was the element most affected by anthropogenic emissions. No pronounced seasonal variations are observed for most trace elements despite different transport pathways. In our study, the composition of wet precipitation reflects a regional background condition and is not clearly related to specific source regions. For the trace element record from ice cores and snow pits in the Himalayas, it could be deduced that the pronounced seasonal patterns were caused by the dry deposition of trace elements (aerosols) during their long exposure to the atmosphere after precipitation events. Our findings are of value for the understanding of the trace element deposition mechanisms in the Himalayas.
Science of The Total Environment | 2017
Chaoliu Li; Fangping Yan; Shichang Kang; Pengfei Chen; Zhaofu Hu; Xiaowen Han; Guoshuai Zhang; Shaopeng Gao; Bin Qu; Mika Sillanpää
The concentrations, depositions and optical properties of precipitation DOC at three remote stations (Nam Co, Lulang and Everest) were investigated in the Himalayas and Tibetan Plateau (HTP). The results showed that their volume-weighted mean DOC concentrations were 1.05±1.01mgCL-1, 0.83±0.85mgCL-1 and 0.86±0.91mgCL-1, respectively, close to those of other remote areas in the world and lower than those of typical polluted urban cities. Combined with precipitation amounts, the DOC depositions at these three stations were calculated to be 0.34±0.32gCm-2yr-1, 0.84±0.86gCm-2yr-1 and 0.16±0.17gCm-2yr-1, respectively. The annual DOC deposition in the HTP was approximately 0.94±0.87TgC, the highest and lowest values appeared in the southeastern and northwestern plateau, respectively. The sources of DOC in the precipitation at these three stations were remarkably different, indicating large spatial heterogeneity in the sources of precipitation DOC over the HTP. Nam Co presented combustion sources from South Asia and local residents, Lulang showed biomass combustion source from South Asia, and Everest was mainly influenced by local mineral dust. The values of the MACDOC at 365nm were 0.48±0.47m2g-1, 0.25±0.15m2g-1, and 0.64±0.49m2g-1, respectively, for the precipitation at the three stations. All of these values were significantly lower than those of corresponding near-surface aerosol samples because precipitation DOC contains more secondary organic aerosol with low light absorption abilities. Additionally, this phenomenon was also observed in seriously polluted urban areas, implying it is universal in the atmosphere. Because precipitation DOC contains information for both particle-bound and gaseous components from the near surface up to the altitude of clouds where precipitation occurs, the MACDOC of precipitation is more representative than that of near-surface aerosols for a given region.
Environmental Science and Pollution Research | 2016
Balram Pokhrel; Ping Gong; Xiaoping Wang; Shaopeng Gao; Chuanfei Wang; Tandong Yao
AbstractSemi-volatile pollutants can undergo long-range atmospheric transport from low-altitude source regions to high-altitude regions and then accumulate in surface matrices (soil and plants). The Himalayas is the highest mountain range worldwide, but there have been limited studies on the source, transport, and deposition of polycyclic aromatic hydrocarbons (PAHs) and mercury (Hg) in the region. In this study, atmospheric PAHs, and the PAHs and Hg in soil and foliage were determined along a transect on a southern slope of the Himalayas, Nepal. The study showed anthropogenic emissions of PAHs and Hg occurred in the lowland areas of Nepal, and upslope transport to the high-altitude regions happened for both pollutants. During the upslope transport, forest filter effect and snow scavenging may be the important factors that enhance the deposition of PAHs, contributing to the negative pattern between concentrations of PAHs and altitudes. On the contrary, more Hg accumulated in the high Himalayas, relating to the enhanced deposition in the high altitude caused by the higher input from upper atmosphere. Graphical abstractDistribution and environmental processes of PAHs and Hg along the southern slope of Himalayan mountain
Science of The Total Environment | 2018
Zhaofu Hu; Shichang Kang; Fangping Yan; Yulan Zhang; Yang Li; Pengfei Chen; Xiang Qin; Kun Wang; Shaopeng Gao; Chaoliu Li
In glacierized regions, melting process has a significant effect on concentrations and light absorption characteristics of dissolved organic carbon (DOC), potentially resulting in variations of its radiative forcing, which is not yet relevant research at glacier region of the Tibetan Plateau (TP). In this study, DOC fractionation and its radiative forcing change during the melting process were investigated at Laohugou glacier No. 12 (LHG glacier) in western Qilian Mts., northern TP. DOC concentrations in fresh snow, snowpit and surface ice samples were 0.38 ± 0.06, 0.22 ± 0.11 and 0.60 ± 0.21 mg L-1, respectively. Their mass absorption cross-section at 365 nm (MAC365) were 0.65 ± 0.16, 4.71 ± 3.68 and 1.44 ± 0.52 m2 g-1, respectively. The MAC365 values of snowpit samples showed a significant negative correlation with DOC concentrations, indicating DOC with high MAC365 values were likely to be kept in snow during the melting process. Topsoil samples of LHG glacierized region likely contributed a lot to snowpit DOC with high MAC365 values due to their similar absorption spectra. Spatially, the DOC concentration of surface ice samples increased from terminus to the upper part of the glacier. Correspondingly, the MAC365 value showed decreased trend. In the freezing experiment on surface ice and topsoil samples, small part of DOC with high MAC365 value was also likely to enter first frozen solid phase. In addition, the radiative forcing caused by snowpit and surface ice DOC increased around 7.64 ± 2.93 and 4.95 ± 1.19 times relative to fresh snow DOC, indicating the snow/ice melting caused by increased light-absorbing DOC needs to be considered in the future research.
Tellus B | 2012
Guangjian Wu; Chenglong Zhang; Zhongqin Li; Xuelei Zhang; Shaopeng Gao
ABSTRACT This study describes the dissolved and insoluble iron fraction of dust (mineral aerosol) in high-alpine snow samples collected along a north-south transect across High Asia (Eastern Tien Shan, Qilian Shan, and Southern Tibetan Plateau). This dust provides the basic chemical properties of mid- and high-level tropospheric Asian dust that can supply the limiting iron nutrient for phytoplankton growth in the North Pacific. The iron content in Asian dust averages 4.95% in Eastern Tien Shan, 3.38–5.41% along Qilian Shan and 3.85% in the Southern Tibetan Plateau. The iron fractional solubility averages about 0.25% in Eastern Tien Shan, 0.05–2% along Qilian Shan and 1.5% in the Southern Tibetan Plateau. Among the controlling factors that can affect iron solubility in Asian dust, such as dust composition and particle grain size, acidity seems to be the most significant and can increase the iron solubility by one or two orders of magnitude with acidification of pH=0.66. Our results reveal that iron solubility of dust in the remote downwind sites is higher than that in high-alpine snow, confirming the strong pH-dependence of iron solubility, and indicating that Asian dust shows a large variation in iron solubility on a regional scale.
Chemosphere | 2018
Balram Pokhrel; Ping Gong; Xiaoping Wang; Mengke Chen; Chuanfei Wang; Shaopeng Gao
Due to the high temperature and extensive use of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), tropical cities could act as secondary sources of these pollutants and therefore received global concern. As compared with other tropical cities, studies on the air-soil exchange of OCPs, PCBs and PAHs in tropical Nepali cities remained limited. In the present study, 39 soil samples from Kathmandu (capital of Nepal) and 21 soil samples from Pokhara (second largest city in Nepal) were collected The soil concentrations of the sum of endosulfans (α- and β-endosulfans) ranged from 0.01 to 16.4 ng/g dw. Meanwhile, ∑dichlorodiphenyltrichloroethane (DDTs) ranged from 0.01 to 6.5 ng/g dw; ∑6PCBs from 0.01 to 9.7 ng/g dw; and ∑15PAHs from 17.1 to 6219 ng/g dw. High concentrations of OCPs were found in the soil of commercial land, while, high soil PAH concentrations were found on tourist/religious and commercial land. Combined the published air concentrations, and the soil data of this study, the directions and fluxes of air-soil exchange were estimated using a fugacity model. It is clear that Nepal is a country contributing prominently to secondary emissions of endosulfans, hexachlorobenzene (HCB), and low molecular weight (LMW) PCBs and PAHs. The flux for all the pollutants in Kathmandu, with ∑endosulfans up to 3553; HCB up to 5263; and ∑LMW-PAHs up to 24378 ng m-2 h-1, were higher than those in Pokhara. These high flux values indicated the high strength of Nepali soils to act as a source.
Chemosphere | 2019
Chaoliu Li; Xiaowen Han; Shichang Kang; Fangping Yan; Pengfei Chen; Zhaofu Hu; Junhua Yang; Duojie Ciren; Shaopeng Gao; Mika Sillanpää; Yongming Han; Yuyan Cui; Shang Liu; Kirk R. Smith
Fairly high near-surface PM2.5 concentrations were found during relatively static winter conditions within Lhasa - a Tibetan Plateau city normally considered to have a clean atmosphere. The average daily PM2.5 concentration reached 118 ± 60 μg m-3 during the study period, was approximately 3.4 times the United States Environmental Protection Agency 24-h standard. PM2.5 concentration of Lhasa increased from 20:00 until 23:00, which was probably caused by space heating, waste incineration activities and decreased boundary layer at night. Furthermore, we found traditional religious butter lamp lighting of local Tibetan residents during festivals could cause PM2.5 concentration to reach an alarmingly high level, 240 ± 30 μg m-3. Therefore, to protect the atmosphere of Lhasa, the government may wish to conduct more complete monitoring and find ways to encourage clean heating and cooking fuels, enforce the supervision on illegal emission activities such as waste incineration, and guide residents to transfer to more environmentally friendly activities during festivals.
Environmental Science & Technology | 2018
Guangming Wu; Xin Wan; Shaopeng Gao; Pingqing Fu; Yongguang Yin; Gang Li; Guoshuai Zhang; Shichang Kang; Kirpa Ram; Zhiyuan Cong
Humic-like substances (HULIS) are major components of light-absorbing brown carbon that play an important role in Earths radiative balance. However, their concentration, optical properties, and sources are least understood over Tibetan Plateau (TP). In this study, the analysis of total suspended particulate (TSP) samples from central of TP (i.e., Nam Co) reveal that atmospheric HULIS are more abundant in summer than that in winter without obvious diurnal variations. The light absorption ability of HULIS in winter is 2-3 times higher than that in summer. In winter, HULIS are mainly derived from biomass burning emissions in South Asia by long-range transport. In contrast, the oxidation of anthropogenic and biogenic precursors from northeast part of India and southeast of TP are major sources of HULIS in summer.