Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaopeng Qiu is active.

Publication


Featured researches published by Shaopeng Qiu.


Cancer Research | 2010

Compensatory Upregulation of Tyrosine Kinase Etk/BMX in Response to Androgen Deprivation Promotes Castration-Resistant Growth of Prostate Cancer Cells

Bojie Dai; Hege Chen; Shengjie Guo; Xi Yang; Douglas E. Linn; Feng Sun; Wei Li; Zhiyong Guo; Kexin Xu; Oekyung Kim; Xiangtian Kong; Jonathan Melamed; Shaopeng Qiu; Hegang Chen; Yun Qiu

We previously showed that targeted expression of non-receptor tyrosine kinase Etk/BMX in mouse prostate induces prostate intraepithelial neoplasia, implying a possible causal role of Etk in prostate cancer development and progression. Here, we report that Etk is upregulated in both human and mouse prostates in response to androgen ablation. Etk expression seems to be differentially regulated by androgen and interleukin 6 (IL-6), which is possibly mediated by the androgen receptor (AR) in prostate cancer cells. Our immunohistochemical analysis of tissue microarrays containing 112 human prostate tumor samples revealed that Etk expression is elevated in hormone-resistant prostate cancer and positively correlated with tyrosine phosphorylation of AR (Pearson correlation coefficient rho = 0.71, P < 0.0001). AR tyrosine phosphorylation is increased in Etk-overexpressing cells, suggesting that Etk may be another tyrosine kinase, in addition to Src and Ack-1, which can phosphorylate AR. We also showed that Etk can directly interact with AR through its Src homology 2 domain, and such interaction may prevent the association of AR with Mdm2, leading to stabilization of AR under androgen-depleted conditions. Overexpression of Etk in androgen-sensitive LNCaP cells promotes tumor growth while knocking down Etk expression in hormone-insensitive prostate cancer cells by a specific shRNA that inhibits tumor growth under androgen-depleted conditions. Taken together, our data suggest that Etk may be a component of the adaptive compensatory mechanism activated by androgen ablation in prostate and may play a role in hormone resistance, at least in part, through direct modulation of the AR signaling pathway.


PLOS ONE | 2013

Protein Expression of ZEB2 in Renal Cell Carcinoma and Its Prognostic Significance in Patient Survival

Yong Fang; Jinhuan Wei; Jiazheng Cao; Hongwei Zhao; Bing Liao; Shaopeng Qiu; Daohu Wang; Junhang Luo; Wei Chen

Background ZEB2 has been reportedly shown to mediate the epithelial-to-mesenchymal transition (EMT) and disease aggressiveness in human tumors. However, the expression status of ZEB2 in renal cell carcinoma (RCC) and ZEB2’s clinicopathologic/prognostic significance are poorly understood. Methodology/Principal Findings In this study, tissue microarray, immunohistochemistry (IHC) and western blot analyses were utilized to investigate the ZEB2 expression status in RCC and adjacent renal tissue samples. In our study, samples from 116 RCC patients treated with radical nephrectomy were used as a training set to generate a ZEB2 optimal cut-point for patient outcome by receiver operating characteristic (ROC) analysis. For validation, the correlation of ZEB2 expression with the clinical characteristics and patient outcomes in another set (including 113 patients) was analyzed to validate the obtained cut-point. In the training and validation sets, high expression of ZEB2, defined by ROC analysis, predicted a poorer overall survival and progression-free survival, as evidenced by the univariate and multivariate analyses. In different subsets of overall patients, ZEB2 expression was also a prognostic indicator in patients with stage I/II, stage III/IV, grade 1/2 and grade 3/4 disease (P<0.05). Downregulation of ZEB2 by shRNA decreased the migration and invasion ability of 769-P cells in vitro. Furthermore, high ZEB2 expression was positively correlated with vimentin expression and inversely linked to E-cadherin expression in RCC. Conclusions/Significance Our findings provide a basis for the concept that high ZEB2 expression in RCC may be important in the acquisition of an aggressive phenotype. This evidence suggests that ZEB2 overexpression (examined by IHC) is an independent biomarker for the poor prognosis of patients with RCC.


PLOS ONE | 2015

MTHFR 677C>T Polymorphism Increases the Male Infertility Risk: A Meta-Analysis Involving 26 Studies

Mancheng Gong; Wenjing Dong; Tingyu He; Zhirong Shi; Guiying Huang; Rui Ren; Sichong Huang; Shaopeng Qiu; Runqiang Yuan

Background and Objectives Methylenetetrahydrofolate reductase (MTHFR) polymorphism may be a risk factor for male infertility. However, the epidemiologic studies showed inconsistent results regarding MTHFR polymorphism and the risk of male infertility. Therefore, we performed a meta-analysis of published case-control studies to re-examine the controversy. Methods Electronic searches of PubMed, EMBASE, Google Scholar and China National Knowledge Infrastructure (CNKI) were conducted to select eligible literatures for this meta-analysis (updated to June 19, 2014). According to our inclusion criteria and the Newcastle-Ottawa Scale (NOS), only high quality studies that observed the association between MTHFR polymorphism and male infertility risk were included. Crude odds ratio (OR) with 95% confidence interval (CI) was used to assess the strength of association between the MTHFR polymorphism and male infertility risk. Results Twenty-six studies involving 5,575 cases and 5,447 controls were recruited. Overall, MTHFR 677C>T polymorphism showed significant associations with male infertility risk in both fixed effects (CT+TT vs. CC: OR = 1.34, 95% CI: 1.23–1.46) and random effects models (CT+TT vs. CC: OR = 1.39, 95% CI: 1.19–1.62). Further, when stratified by ethnicity, sperm concentration and control sources, the similar results were observed in Asians, Caucasians, Azoo or OAT subgroup and both in population-based and hospital-based controls. Nevertheless, no significant association was only observed in oligo subgroup. Conclusions Our results indicated that the MTHFR polymorphism is associated with an increased risk of male infertility. Further well-designed analytical studies are necessary to confirm our conclusions and evaluate gene-environment interactions with male infertility risk.


PLOS ONE | 2011

Tyrosine Kinase ETK/BMX Is Up-Regulated in Bladder Cancer and Predicts Poor Prognosis in Patients with Cystectomy

Shengjie Guo; Feng Sun; Zhiyong Guo; Wei Li; Alan Alfano; Hegang Chen; Clara E. Magyar; Jiaoti Huang; Toby C. Chai; Shaopeng Qiu; Yun Qiu

Deregulation of the non-receptor tyrosine kinase ETK/BMX has been reported in several solid tumors. In this report, we demonstrated that ETK expression is progressively increased during bladder cancer progression. We found that down-regulation of ETK in bladder cancer cells attenuated STAT3 and AKT activity whereas exogenous overexpression of ETK had opposite effects, suggesting that deregulation of ETK may attribute to the elevated activity of STAT3 and AKT frequently detected in bladder cancer. The survival, migration and invasion of bladder cancer cells were significantly compromised when ETK expression was knocked down by a specific shRNA. In addition, we showed that ETK localizes to mitochondria in bladder cancer cells through interacting with Bcl-XL and regulating ROS production and drug sensitivity. Therefore, ETK may play an important role in regulating survival, migration and invasion by modulating multiple signaling pathways in bladder cancer cells. Immunohistochemistry analysis on tissue microarrays containing 619 human bladder tissue samples shows that ETK is significantly upregulated during bladder cancer development and progression and ETK expression level predicts the survival rate of patients with cystectomy. Taken together, our results suggest that ETK may potentially serve as a new drug target for bladder cancer treatment as well as a biomarker which could be used to identify patients with higher mortality risk, who may be benefited from therapeutics targeting ETK activity.


PLOS ONE | 2013

Association between RASSF1A Promoter Methylation and Prostate Cancer: A Systematic Review and Meta-Analysis

Jincheng Pan; Junxing Chen; Bo Zhang; Xu Chen; Bin Huang; Jintao Zhuang; Chengqiang Mo; Shaopeng Qiu

Prostate cancer (PCa) remains as one of the most common cause of cancer related death among men in the US. The widely used prostate specific antigen (PSA) screening is limited by low specificity. The diagnostic value of other biomarkers such as RAS association domain family protein 1 A (RASSF1A) promoter methylation in prostate cancer and the relationship between RASSF1A methylation and pathological features or tumor stage remains to be established. Therefore, a meta-analysis of published studies was performed to understand the association between RASSF1A methylation and prostate cancer. In total, 16 studies involving 1431 cases and 565 controls were pooled with a random effect model in this investigation. The odds ratio (OR) of RASSF1A methylation in PCa case, compared to controls, was 14.73 with 95% CI = 7.58–28.61. Stratified analyses consistently showed a similar risk across different sample types and, methylation detection methods. In addition, RASSF1A methylation was associated with high Gleason score OR=2.35, 95% CI: 1.56–3.53. Furthermore, the pooled specificity for all included studies was 0.87 (95% CI: 0.72–0.94), and the pooled sensitivity was 0.76 (95% CI: 0.55–0.89). The specificity in each subgroup stratified by sample type remained above 0.84 and the sensitivity also remained above 0.60. These results suggested that RASSF1A promoter methylation would be a potential biomarker in PCa diagnosis and therapy.


Journal of Cancer | 2016

Vasculogenic Mimicry in Prostate Cancer: The Roles of EphA2 and PI3K.

Hua Wang; Hao Lin; Jincheng Pan; Chengqiang Mo; Faming Zhang; Bin Huang; Zongren Wang; Xu Chen; Jintao Zhuang; Daohu Wang; Shaopeng Qiu

BACKGROUND. Aggressive tumor cells can form perfusable networks that mimic normal vasculature and enhance tumor growth and metastasis. A number of molecular players have been implicated in such vasculogenic mimicry, among them the receptor tyrosine kinase EphA2, which is aberrantly expressed in aggressive tumors. Here we study the role and regulation of EphA2 in vasculogenic mimicry in prostate cancer where this phenomenon is still poorly understood. METHODS. Vasculogenic mimicry was characterized by tubules whose cellular lining was negative for the endothelial cell marker CD34 but positive for periodic acid-Schiff staining, and/or contained red blood cells. Vasculogenic mimicry was assessed in 92 clinical samples of prostate cancer and analyzed in more detail in three prostate cancer cell lines kept in three-dimensional culture. Tissue samples and cell lines were also assessed for total and phosphorylated levels of EphA2 and its potential regulator, Phosphoinositide 3-Kinase (PI3K). In addition, the role of EphA2 in vasculogenic mimicry and in cell migration and invasion were investigated by manipulating the levels of EphA2 through specific siRNAs. Furthermore, the role of PI3K in vasculogenic mimicry and in regulating EphA2 was tested by application of an inhibitor, LY294002. RESULTS. Immunohistochemistry of prostate cancers showed a significant correlation between vasculogenic mimicry and high expression levels of EphA2, high Gleason scores, advanced TNM stage, and the presence of lymph node and distant metastases. Likewise, two prostate cancer cell lines (PC3 and DU-145) formed vasculogenic networks on Matrigel and expressed high EphA2 levels, while one line (LNCaP) showed no vasculogenic networks and lower EphA2 levels. Specific silencing of EphA2 in PC3 and DU-145 cells decreased vasculogenic mimicry as well as cell migration and invasion. Furthermore, high expression levels of PI3K and EphA2 phosphorylation at Ser897 significantly correlated with the presence of vasculogenic mimicry and in vitro inhibition of PI3K by LY294002 disrupted vasculogenic mimicry, potentially through a reduction of EphA2 phosphorylation at Ser897. CONCLUSIONS. The expression levels of PI3K and EphA2 are positively correlated with vasculogenic mimicry both in vivo and in vitro. Moreover, phosphorylation levels of EphA2 regulated by PI3K are also significantly associated with vasculogenic mimicry in vivo. Based on its functional implication in vasculogenic mimicry in vitro, EphA2 signaling may be a potential therapeutic target in advanced prostate cancer.


PLOS ONE | 2014

Association of DSC3 mRNA down-regulation in prostate cancer with promoter hypermethylation and poor prognosis.

Jincheng Pan; Yu Chen; Chengqiang Mo; Daohu Wang; Junxing Chen; Xiaopeng Mao; Shengjie Guo; Jintao Zhuang; Shaopeng Qiu

Background Desmocollin 3 (DSC3), a member of the cadherin gene superfamily, is associated with pathogenesis of some cancers, but its role in prostate cancer (PCa) remains largely unknown. Methods DSC3 gene expression level in available PCa microarray dataset was examined using the Oncomine database. DSC3 transcript expression in prostate cell line panel and an independent tissue cohort (n = 52) was estimated by quantitative PCR (Q-PCR). Epigenetic status of DSC3 gene promoter in PCa was investigated by uploading three dataset (ENCODE Infinium 450K array data and two methylation sequencing) in UCSC genome browser. While pyrosequencing analysis measured promoter DNA methylation, Q-PCR estimates were obtained for DSC3 transcript re-expression after 5-Aza-deoxycytidine (5-Aza) treatment. Clinical relevance of DSC3 expression was studied by Kaplan-Meier survival analysis. Finally, functional studies monitoring cell proliferation, migration and invasion were performed in prostate cell lines after siRNA mediated DSC3 knockdown or following 5-Aza induced re-expression. EMT markers Vimentin and E-cadherin expression was measured by Western Blot. Results Microarray data analyses revealed a significant decrease in DSC3 transcript expression in PCa, compared to benign samples. Q-PCR analysis of an independent cohort revealed DSC3 transcript down-regulation, both in PCa cell lines and tumor tissues but not in their benign counterpart. Examination of available NGS and Infinium data identified a role for epigenetic regulation DSC3 mRNA reduction in PCa. Pyrosequencing confirmed the increased DSC3 promoter methylation in cancer cell lines and restoration of transcript expression upon 5-Aza treatment further corroborated this epigenetic silencing mechanism. Importantly Kaplan-Meier analysis of an outcome cohort showed an association between loss of DSC3 expression and significantly increased risk of biochemical recurrence. Functional studies indicate a role for epithelial–mesenchymal transition in DSC3 regulated cell migration/invasion. Conclusion Taken together, our data suggests that DNA methylation contributes to down-regulation of DSC3 in prostate cancer, and loss of DSC3 predicts poor clinical outcome.


Journal of Experimental & Clinical Cancer Research | 2014

The expression and role of tyrosine kinase ETK/BMX in renal cell carcinoma.

Jintao Zhuang; Xiang-An Tu; Kaiyuan Cao; Shengjie Guo; Xiaopeng Mao; Jincheng Pan; Bin Huang; Xu Chen; Yong Gao; Shaopeng Qiu

BackgroundExpression of the non-receptor tyrosine kinase ETK/BMX has been reported in several solid tumors, but the underlying molecular mechanisms and its clinical significance in renal cell carcinoma (RCC) remain to be elucidated.MethodsETK expression in 90 human RCC and 30 human normal renal tissue samples was examined by immunohistochemistry and compared with several clinicopathologic parameters. To further demonstrate the biological function of ETK in RCC, Western blot was used to test the expression level of ETK protein in RCC cell lines. Subsequent to the downregulation of ETK by small interfering RNA, the effects of ETK on RCC cell growth, apoptosis, migration and invasion were assessed by methyl thiazol tetrazolium assay, flow cytometry and transwell assay. And the varying expression of VEGF, STAT3 and phosphorylated STAT3 (p-STAT3) in RCC were evaluated by Western blot.ResultsImmunohistochemistry analysis showed that ETK expression was highly increased in RCC and was positively correlated with clinical stage, grade and metastasis. Simultaneously, the overall survival time in patients with higher ETK expression was obviously shorter than that in patients with lower ETK expression. ETK was also detected in RCC cell lines. Moreover, the down-regulating ETK significantly inhibited RCC cell growth, migration, invasion and promoted apoptosis. The expression of VEGF and p-STAT3 were also decreased.ConclusionsOur study suggests that the overexpression of ETK is associated with the malignancy and disease progression of RCC. Since ETK is also involved in RCC cell biological function and VEGF-ETK-STAT3 loop, ETK may be used as a potential therapeutic target for RCC.


Urologic Oncology-seminars and Original Investigations | 2015

Matrix metalloproteinase-9 is required for vasculogenic mimicry by clear cell renal carcinoma cells☆

Hao Lin; Jincheng Pan; Faming Zhang; Bin Huang; Xu Chen; Jintao Zhuang; Hua Wang; Chengqiang Mo; Daohu Wang; Shaopeng Qiu

BACKGROUND Vasculogenic mimicry (VM), a new pattern of tumor microcirculation system, has been proved to be important for tumor growth and progression and may be one of the causes of antiangiogenesis resistance. Matrix metalloproteinase-9 (MMP9) was shown to correlate with VM formation in some other cancers. However, the relationship between VM formation and MMP9 in renal cell carcinoma (RCC) has not been determined. METHODS The VM formation and MMP9 expressions were analyzed by CD34/periodic acid-Schiff dual staining and immunohistochemistry in 119 RCC specimens. We used a well-established 3-dimention culture model to compare VM formation in 786-O, 769-P, and HK-2 cell lines in vitro. MMP9 expressions on either messenger RNA or protein levels were compared among the cell lines by quantitative polymerase chain reaction or Western blot. To determine further the relationship between MMP9 and VM in RCC, 786-O and 769-P were treated with specific MMP9 inhibitor or small interfering RNA. VM formation, cell migration, and invasion were subsequently assessed by 3-dimention culture, wound-healing, and transwell assays. RESULTS Immunohistochemistry demonstrated both VM formation and MMP9 overexpression were positively associated with clinical staging, pathological grade, and metastasis (P<0.01). VM formation was closely correlated with MMP9 overexpression in RCC (r = 0.602, P<0.01). Lower MMP9 expression level was observed in normal kidney cell line HK-2, which was unable to form VM on Matrigel, whereas higher expression of MMP9 was found in VM-forming cancer cell lines 786-O and 769-P. Inhibition of MMP9 not only disrupted VM formation in 786-O and 769-P but also reduced cell migration and invasion. CONCLUSIONS These results indicate an intimate relationship between MMP9 overexpression and VM formation in RCC. Treatments targeting VM formation by inhibiting the activity of MMP9 could be beneficial in RCC therapy.


Oncotarget | 2017

Vascular endothelial growth factor gene polymorphisms and the risk of renal cell carcinoma: Evidence from eight case-control studies

Mancheng Gong; Wenjing Dong; Zhirong Shi; Shaopeng Qiu; Runqiang Yuan

Background Vascular endothelial growth factor (VEGF) protein plays important role in renal cell carcinoma (RCC) development and progression. VEGF gene polymorphisms can alter the protein concentrations and might be associated with renal cell carcinoma risk. However, the results of studies investigating the association between VEGF polymorphisms and renal cell carcinoma risk are inconsistent. Thus, a meta-analysis was performed. Methods We selected eligible studies via electronic searches. Only high-quality studies were included based on specific inclusion criteria and the Newcastle-Ottawa Scale (NOS). Results Eight studies primarily focusing on seven polymorphisms were included in our meta-analysis. Our results showed dramatically high risks for renal cell carcinoma were found regarding most genetic models and alleles of the +936C/T polymorphism (except CT vs. CC). In addition, significant increased renal cell carcinoma risks were found regarding all genetic models and alleles of the -2578C/A polymorphism. However, no significant associations were found between renal cell carcinoma risk and the +1612G/A, -460T/C, -634G/C, -405G/C or -1154G/A polymorphisms. Conclusions Our meta-analysis indicates that the +936C/T and -2578C/A polymorphisms of VEGF are associated with an increased risk for renal cell carcinoma. Additional rigorous analytical studies are needed to confirm our results.

Collaboration


Dive into the Shaopeng Qiu's collaboration.

Top Co-Authors

Avatar

Daohu Wang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xu Chen

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Bin Huang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Wang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge