Shaoping Guan
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shaoping Guan.
Analytical Chemistry | 2008
Gang Sun; Kui Yang; Zhongdan Zhao; Shaoping Guan; Xianlin Han; Richard W. Gross
A matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) based approach was developed for the rapid analyses of cellular glycerophospholipids. Through multiplexed solvent-enabled optimization of analyte-matrix interactions during the crystallization process, over a 30-fold increase in S/N was achieved using 9-aminoacridine as the matrix. The linearity of response (r(2) = 0.99) and dynamic range of this method (over 2 orders of magnitude) were excellent. Moreover, through multiplexing ionization conditions by generating suites of different analyte-matrix interactions in the absence or presence of different alkali metal cations in the matrix, discrete lipid classes were highly and selectively ionized under different conditions resulting in the de facto resolution of lipid classes without chromatography. The resultant decreases in spectral complexity facilitated tandem mass spectrometric analysis through high energy fragmentation of lithiated molecular ions that typically resulted in informative fragment ions. Anionic phospholipids were also detected as singly negatively charged species that could be fragmented using MALDI tandem mass spectrometry leading to structural assignments. Collectively, these results identify a rapid, sensitive, and highly informative MALDI-TOF MS approach for analysis of cellular glycerophospholipids directly from extracts of mammalian tissues without the need for prior chromatographic separation.
Biochemistry | 2008
Hua Cheng; David J. Mancuso; Xuntian Jiang; Shaoping Guan; Jingyue Yang; Kui Yang; Gang Sun; Richard W. Gross; Xianlin Han
Large-scale neuronal remodeling through apoptosis occurs shortly after birth in all known mammalian species. Apoptosis, in large part, depends upon critical interactions between mitochondrial membranes and cytochrome c. Herein, we examined the hypothesis that the large-scale reorganization of neuronal circuitry after birth is accompanied by profound alterations in cardiolipin (CL) content and molecular species distribution. During embryonic development, over 100 CL molecular species were identified and quantitated in murine neuronal tissues. The embryonic CL profile was notable for the presence of abundant amounts of relatively short aliphatic chains (e.g., palmitoleic and oleic acids). In sharp contrast, after birth, the CL profile contained a remarkably complex repertoire of CL molecular species, in which the signaling fatty acids (i.e., arachidonic and docosahexaenoic acids) were markedly increased. These results identify the rapid remodeling of CL in the perinatal period with resultant alterations in the physical properties of the mitochondrial membrane. The complex distribution of aliphatic chains in the neuronal CL pool is separate and distinct from that in other organs (e.g., heart, liver, etc.), where CL molecular species contain predominantly only one major type of aliphatic chain (e.g., linoleic acid). Analyses of mRNA levels by real-time quantitative polymerase chain reactions suggested that the alterations in CL content were due to the combined effects of both attenuation of de novo CL biosynthesis and decreased remodeling of CL. Collectively, these results provide a new perspective on the complexity of CL in neuronal signaling, mitochondrial bioenergetics, and apoptosis.
Journal of Biological Chemistry | 2009
David J. Mancuso; Paul T. Kotzbauer; David F. Wozniak; Harold F. Sims; Christopher M. Jenkins; Shaoping Guan; Xianlin Han; Kui Yang; Gang Sun; Ibrahim Malik; Sara Conyers; Karen G. Green; Robert E. Schmidt; Richard W. Gross
Genetic ablation of calcium-independent phospholipase A2γ (iPLA2γ) results in profound alterations in hippocampal phospholipid metabolism and mitochondrial phospholipid homeostasis resulting in enlarged and degenerating mitochondria leading to autophagy and cognitive dysfunction. Shotgun lipidomics demonstrated multiple alterations in hippocampal lipid metabolism in iPLA2γ−/− mice including: 1) a markedly elevated hippocampal cardiolipin content with an altered molecular species composition characterized by a shift to shorter chain length molecular species; 2) alterations in both choline and ethanolamine glycerophospholipids, including a decreased plasmenylethanolamine content; 3) increased oxidized phosphatidylethanolamine molecular species; and 4) an increased content of ceramides. Electron microscopic examination demonstrated the presence of enlarged heteromorphic lamellar structures undergoing degeneration accompanied by the presence of ubiquitin positive spheroid inclusion bodies. Purification of these enlarged heteromorphic lamellar structures by buoyant density centrifugation and subsequent SDS-PAGE and proteomics identified them as degenerating mitochondria. Collectively, these results identify the obligatory role of iPLA2γ in neuronal mitochondrial lipid metabolism and membrane structure demonstrating that iPLA2γ loss of function results in a mitochondrial neurodegenerative disorder characterized by degenerating mitochondria, autophagy, and cognitive dysfunction.
Journal of Biological Chemistry | 2010
David J. Mancuso; Harold F. Sims; Kui Yang; Michael A. Kiebish; Xiong Su; Christopher M. Jenkins; Shaoping Guan; Sung Ho Moon; Terri Pietka; Fatiha Nassir; Timothy Schappe; Kristin Moore; Xianlin Han; Nada A. Abumrad; Richard W. Gross
Phospholipases are critical enzyme mediators participating in many aspects of cellular function through modulating the generation of lipid 2nd messengers, membrane physical properties, and cellular bioenergetics. Here, we demonstrate that mice null for calcium-independent phospholipase A2γ (iPLA2γ−/−) are completely resistant to high fat diet-induced weight gain, adipocyte hypertrophy, hyperinsulinemia, and insulin resistance, which occur in iPLA2γ+/+ mice after high fat feeding. Notably, iPLA2γ−/− mice were lean, demonstrated abdominal lipodystrophy, and remained insulin-sensitive despite having a marked impairment in glucose-stimulated insulin secretion after high fat feeding. Respirometry of adipocyte explants from iPLA2γ−/− mice identified increased rates of oxidation of multiple different substrates in comparison with adipocyte explants from wild-type littermates. Shotgun lipidomics of adipose tissue from wild-type mice demonstrated the anticipated 2-fold increase in triglyceride content after high fat feeding. In sharp contrast, the adipocyte triglyceride content was identical in iPLA2γ−/− mice fed either a standard diet or a high fat diet. Respirometry of skeletal muscle mitochondria from iPLA2γ−/− mice demonstrated marked decreases in state 3 respiration using multiple substrates whose metabolism was uncoupled from ATP production. Shotgun lipidomics of skeletal muscle revealed a decreased content of cardiolipin with an altered molecular species composition thereby identifying the mechanism underlying mitochondrial uncoupling in the iPLA2γ−/− mouse. Collectively, these results identify iPLA2γ as an obligatory upstream enzyme that is necessary for efficient electron transport chain coupling and energy production through its participation in the alterations of cellular bioenergetics that promote the development of the metabolic syndrome.
Journal of Lipid Research | 2013
Michael A. Kiebish; Kui Yang; Xinping Liu; David J. Mancuso; Shaoping Guan; Zhongdan Zhao; Harold F. Sims; Rebekah Cerqua; W. Todd Cade; Xianlin Han; Richard W. Gross
Barth syndrome is a complex metabolic disorder caused by mutations in the mitochondrial transacylase tafazzin. Recently, an inducible tafazzin shRNA knockdown mouse model was generated to deconvolute the complex bioenergetic phenotype of this disease. To investigate the underlying cause of hemodynamic dysfunction in Barth syndrome, we interrogated the cardiac structural and signaling lipidome of this mouse model as well as its myocardial bioenergetic phenotype. A decrease in the distribution of cardiolipin molecular species and robust increases in monolysocardiolipin and dilysocardiolipin were demonstrated. Additionally, the contents of choline and ethanolamine glycerophospholipid molecular species containing precursors for lipid signaling at the sn-2 position were altered. Lipidomic analyses revealed specific dysregulation of HETEs and prostanoids, as well as oxidized linoleic and docosahexaenoic metabolites. Bioenergetic interrogation uncovered differential substrate utilization as well as decreases in Complex III and V activities. Transgenic expression of cardiolipin synthase or iPLA2γ ablation in tafazzin-deficient mice did not rescue the observed phenotype. These results underscore the complex nature of alterations in cardiolipin metabolism mediated by tafazzin loss of function. Collectively, we identified specific lipidomic, bioenergetic, and signaling alterations in a murine model that parallel those of Barth syndrome thereby providing novel insights into the pathophysiology of this debilitating disease.
Journal of Neurochemistry | 2006
Hua Cheng; Shaoping Guan; Xianlin Han
Herein, we report the first study on the mass distribution and molecular species composition of abundant triacylglycerols (TAG) in ganglia. This study demonstrates five novel findings. First, unanticipated high levels of TAG were present in all examined ganglia from multiple species (e.g. mouse, rat and rabbit). Second, ganglial TAG mass content is location‐dependent. Third, the TAG mass levels in ganglia are species‐specific. Fourth, dorsal root ganglial TAG mass levels in streptozotocin‐induced diabetic mice are dramatically depleted relative to those found in untreated control mice. Fifth, mouse ganglial TAG mass levels decrease with age although molecular species composition is not changed. Collectively, these results indicate that TAG is an important component of ganglia and may potentially contribute to pathological alterations in peripheral neuronal function in diabetic neuropathy.
Journal of Biological Chemistry | 2012
Sung Ho Moon; Christopher M. Jenkins; Xinping Liu; Shaoping Guan; David J. Mancuso; Richard W. Gross
Background: Calcium-independent PLA2γ is a major phospholipase in cardiac mitochondria that modulates multiple mitochondrial functions, but its mechanism of activation is unknown. Results: Divalent cations activate iPLA2γ leading to release of eicosanoids and lysolipids from mitochondrial phospholipids. Conclusion: Divalent cation-activated mitochondrial iPLA2γ initiates the production of biologically active signaling metabolites. Significance: iPLA2γ contributes to regulation of myocardial bioenergetic and electrophysiologic functions by production of eicosanoids. Calcium-independent phospholipase A2γ (iPLA2γ) (PNPLA8) is the predominant phospholipase activity in mammalian mitochondria. However, the chemical mechanisms that regulate its activity are unknown. Here, we utilize iPLA2γ gain of function and loss of function genetic models to demonstrate the robust activation of iPLA2γ in murine myocardial mitochondria by Ca2+ or Mg2+ ions. Calcium ion stimulated the production of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) from 1-palmitoyl-2-[14C]arachidonoyl-sn-glycero-3-phosphocholine during incubations with wild-type heart mitochondrial homogenates. Furthermore, incubation of mitochondrial homogenates from transgenic myocardium expressing iPLA2γ resulted in 13- and 25-fold increases in the initial rate of radiolabeled 2-AA-LPC and arachidonic acid (AA) production, respectively, in the presence of calcium ion. Mass spectrometric analysis of the products of calcium-activated hydrolysis of endogenous mitochondrial phospholipids in transgenic iPLA2γ mitochondria revealed the robust production of AA, 2-AA-LPC, and 2-docosahexaenoyl-LPC that was over 10-fold greater than wild-type mitochondria. The mechanism-based inhibitor (R)-(E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one (BEL) (iPLA2γ selective), but not its enantiomer, (S)-BEL (iPLA2β selective) or pyrrolidine (cytosolic PLA2α selective), markedly attenuated Ca2+-dependent fatty acid release and polyunsaturated LPC production. Moreover, Ca2+-induced iPLA2γ activation was accompanied by the production of downstream eicosanoid metabolites that were nearly completely ablated by (R)-BEL or by genetic ablation of iPLA2γ. Intriguingly, Ca2+-induced iPLA2γ activation was completely inhibited by long-chain acyl-CoA (IC50 ∼20 μm) as well as by a nonhydrolyzable acyl-CoA thioether analog. Collectively, these results demonstrate that mitochondrial iPLA2γ is activated by divalent cations and inhibited by acyl-CoA modulating the generation of biologically active metabolites that regulate mitochondrial bioenergetic and signaling functions.
Journal of Biological Chemistry | 2012
Michael A. Kiebish; Kui Yang; Harold F. Sims; Christopher M. Jenkins; Xinping Liu; David J. Mancuso; Zhongdan Zhao; Shaoping Guan; Dana R. Abendschein; Xianlin Han; Richard W. Gross
Background: Maintenance of cardiolipin molecular speciation by remodeling directly regulates mitochondrial bioenergetic efficiency. Results: Transgenic expression of cardiolipin synthase accelerates cardiolipin remodeling, improves mitochondrial function, modulates mitochondrial signaling, and attenuates mitochondrial dysfunction during diabetes. Conclusion: Cardiolipin synthase integrates multiple aspects of mitochondrial bioenergetic and signaling functions. Significance: Cardiolipin synthase expression attenuates mitochondrial dysfunction in diabetic myocardium. Lipidomic regulation of mitochondrial cardiolipin content and molecular species composition is a prominent regulator of bioenergetic efficiency. However, the mechanisms controlling cardiolipin metabolism during health or disease progression have remained elusive. Herein, we demonstrate that cardiac myocyte-specific transgenic expression of cardiolipin synthase results in accelerated cardiolipin lipidomic flux that impacts multiple aspects of mitochondrial bioenergetics and signaling. During the postnatal period, cardiolipin synthase transgene expression results in marked changes in the temporal maturation of cardiolipin molecular species during development. In adult myocardium, cardiolipin synthase transgene expression leads to a marked increase in symmetric tetra-18:2 molecular species without a change in total cardiolipin content. Mechanistic analysis demonstrated that these alterations result from increased cardiolipin remodeling by sequential phospholipase and transacylase/acyltransferase activities in conjunction with a decrease in phosphatidylglycerol content. Moreover, cardiolipin synthase transgene expression results in alterations in signaling metabolites, including a marked increase in the cardioprotective eicosanoid 14,15-epoxyeicosatrienoic acid. Examination of mitochondrial bioenergetic function by high resolution respirometry demonstrated that cardiolipin synthase transgene expression resulted in improved mitochondrial bioenergetic efficiency as evidenced by enhanced electron transport chain coupling using multiple substrates as well as by salutary changes in Complex III and IV activities. Furthermore, transgenic expression of cardiolipin synthase attenuated maladaptive cardiolipin remodeling and bioenergetic inefficiency in myocardium rendered diabetic by streptozotocin treatment. Collectively, these results demonstrate the unanticipated role of cardiolipin synthase in maintaining physiologic membrane structure and function even under metabolic stress, thereby identifying cardiolipin synthase as a novel therapeutic target to attenuate mitochondrial dysfunction in diabetic myocardium.
Analytical Biochemistry | 2013
Xinping Liu; Sung Ho Moon; David J. Mancuso; Christopher M. Jenkins; Shaoping Guan; Harold F. Sims; Richard W. Gross
A highly sensitive, specific, and robust method for the analysis of oxidized metabolites of linoleic acid (LA), arachidonic acid (AA), and docosahexaenoic acid (DHA) was developed using charge-switch derivatization, liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI MS/MS) with selected reaction monitoring (SRM) and quantitation by high mass accuracy analysis of product ions, thereby minimizing interferences from contaminating ions. Charge-switch derivatization of LA, AA, and DHA metabolites with N-(4-aminomethylphenyl)-pyridinium resulted in a 10- to 30-fold increase in ionization efficiency. Improved quantitation was accompanied by decreased false positive interferences through accurate mass measurements of diagnostic product ions during SRM transitions by ratiometric comparisons with stable isotope internal standards. The limits of quantitation were between 0.05 and 6.0pg, with a dynamic range of 3 to 4 orders of magnitude (correlation coefficient r(2)>0.99). This approach was used to quantitate the levels of representative fatty acid metabolites from wild-type (WT) and iPLA2γ(-/-) mouse liver identifying the role of iPLA2γ in hepatic lipid second messenger production. Collectively, these results demonstrate the utility of high mass accuracy product ion analysis in conjunction with charge-switch derivatization for the highly specific quantitation of diminutive amounts of LA, AA, and DHA metabolites in biologic systems.
Journal of Biological Chemistry | 2017
Gao-Yuan Liu; Sung Ho Moon; Christopher M. Jenkins; Maoyin Li; Harold F. Sims; Shaoping Guan; Richard W. Gross
Cardiolipin (CL) is a dimeric phospholipid with critical roles in mitochondrial bioenergetics and signaling. Recently, inhibition of the release of oxidized fatty acyl chains from CL by the calcium-independent phospholipase A2γ (iPLA2γ)-selective inhibitor (R)-BEL suggested that iPLA2γ is responsible for the hydrolysis of oxidized CL and subsequent signaling mediated by the released oxidized fatty acids. However, chemical inhibition by BEL is subject to off-target pharmacologic effects. Accordingly, to unambiguously determine the role of iPLA2γ in the hydrolysis of oxidized CL, we compared alterations in oxidized CLs and the release of oxidized aliphatic chains from CL in experiments with purified recombinant iPLA2γ, germ-line iPLA2γ−/− mice, cardiac myocyte-specific iPLA2γ transgenic mice, and wild-type mice. Using charge-switch high mass accuracy LC-MS/MS with selected reaction monitoring and product ion accurate masses, we demonstrated that iPLA2γ is the major enzyme responsible for the release of oxidized aliphatic chains from CL. Our results also indicated that iPLA2γ selectively hydrolyzes 9-hydroxy-octadecenoic acid in comparison to 13-hydroxy-octadecenoic acid from oxidized CLs. Moreover, oxidative stress (ADP, NADPH, and Fe3+) resulted in the robust production of oxidized CLs in intact mitochondria from iPLA2γ−/− mice. In sharp contrast, oxidized CLs were readily hydrolyzed in mitochondria from wild-type mice during oxidative stress. Finally, we demonstrated that CL activates the iPLA2γ-mediated hydrolysis of arachidonic acid from phosphatidylcholine, thereby integrating the production of lipid messengers from different lipid classes in mitochondria. Collectively, these results demonstrate the integrated roles of CL and iPLA2γ in lipid second-messenger production and mitochondrial bioenergetics during oxidative stress.