Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaorong Gao is active.

Publication


Featured researches published by Shaorong Gao.


Cell Stem Cell | 2013

Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming.

Yawei Gao; Jiayu Chen; Ke Li; Tong Wu; Bo Huang; Wenqiang Liu; Xiaochen Kou; Yu Zhang; Hua Huang; Yonghua Jiang; Chao Yao; Xiaolei Liu; Zhiwei Lu; Zijian Xu; Lan Kang; Jun Chen; Hailin Wang; Tao Cai; Shaorong Gao

DNA methylation and demethylation have been proposed to play an important role in somatic cell reprogramming. Here, we demonstrate that the DNA hydroxylase Tet1 facilitates pluripotent stem cell induction by promoting Oct4 demethylation and reactivation. Moreover, Tet1 (T) can replace Oct4 and initiate somatic cell reprogramming in conjunction with Sox2 (S), Klf4 (K), and c-Myc (M). We established an efficient TSKM secondary reprogramming system and used it to characterize the dynamic profiles of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), and gene expression during reprogramming. Our analysis revealed that both 5mC and 5hmC modifications increased at an intermediate stage of the process, correlating with a transition in the transcriptional profile. We also found that 5hmC enrichment is involved in the demethylation and reactivation of genes and regulatory regions that are important for pluripotency. Our data indicate that changes in DNA methylation and hydroxymethylation play important roles in genome-wide epigenetic remodeling during reprogramming.


Science | 2012

Dense Chromatin Activates Polycomb Repressive Complex 2 to Regulate H3 Lysine 27 Methylation

Wen Yuan; Tong Wu; Hang Fu; Chao Dai; Hui Wu; Nan Liu; Xiang Li; Mo Xu; Zhuqiang Zhang; Tianhui Niu; Zhifu Han; Jijie Chai; Xianghong Jasmine Zhou; Shaorong Gao; Bing Zhu

Maintaining Repression The Polycomb Repressive Complex 2 (PRC2) plays a critical role in gene silencing in metazoans, methylating histone H3 on lysine 27 (H3K27) to generate a repressive chromatin mark. The catalytic subunit E(z)/Ezh2 requires the presence of two other subunits—ESC/EED and Su(z)12—for enzyme activity. Yuan et al. (p. 971; see the Perspective by Pirrotta) show that both a fragment of the histone H3 N-terminal tail, and histone H1 stimulated PRC2 enzyme activity on poor, low-density chromatin substrates, indicating that that PRC2 is regulated by the density and compaction states of chromatin. The histone H3 fragment binds to the Su(z)12 subunit of PRC2 to stimulate E(z)/Ezh2. Local chromatin compaction preceded establishment of histone H3K27 methylation indicating how PRC2 might maintain the repressed state. The density and compaction state of chromatin directly regulates the activity of a transcription repressor protein complex. Polycomb repressive complex 2 (PRC2)–mediated histone H3 lysine 27 (H3K27) methylation is vital for Polycomb gene silencing, a classic epigenetic phenomenon that maintains transcriptional silencing throughout cell divisions. We report that PRC2 activity is regulated by the density of its substrate nucleosome arrays. Neighboring nucleosomes activate the PRC2 complex with a fragment of their H3 histones (Ala31 to Arg42). We also identified mutations on PRC2 subunit Su(z)12, which impair its binding and response to the activating peptide and its ability in establishing H3K27 trimethylation levels in vivo. In mouse embryonic stem cells, local chromatin compaction occurs before the formation of trimethylated H3K27 upon transcription cessation of the retinoic acid–regulated gene CYP26a1. We propose that PRC2 can sense the chromatin environment to exert its role in the maintenance of transcriptional states.


Biology of Reproduction | 2003

Somatic Cell-Like Features of Cloned Mouse Embryos Prepared with Cultured Myoblast Nuclei

Shaorong Gao; Young Chung; Jean W. Williams; Joan K. Riley; Kelle H. Moley; Keith E. Latham

Abstract Cloning by somatic cell nuclear transfer requires silencing of the donor cell gene expression program and the initiation of the embryonic gene expression program (nuclear reprogramming). Failure to silence the donor cell program could lead to altered embryonic phenotypes. Cloned mouse embryos produced using myoblast nuclei fail to thrive in standard embryo culture media but flourish in somatic cell culture media favored by the donor myoblasts themselves, forming blastocysts at a significant rate, with robust morphologies, high total cell number, and a normal allocation of cells to the inner cell mass in most embryos. Myoblast cloned embryos continue expressing the GLUT4 glucose transporter, which is typically expressed in muscle but not in preimplantation stage embryos. Myoblast clones also exhibit precocious enrichment of GLUT1 at the cell surface. Both myoblast and cumulus cell cloned embryos exhibit enhanced rates of glucose uptake. These observations indicate that silencing of the donor cell genome during cloning either is incomplete or occurs progressively over the course of preimplantation development. As a result, cloned embryos initially exhibit many somatic cell-like characteristics. Tetraploid constructs, which possess a transplanted somatic cell genome plus the oocyte-derived chromosomes, exhibit a more embryonic-like pattern of gene expression and culture preference. We conclude that preimplantation stage cloned embryos have profoundly altered characteristics that are donor cell type specific and that exposure of cloned embryos to standard embryo culture conditions may lead to disruptions in basic homeostasis and inhibition of a range of essential processes including further nuclear reprogramming, contributing to cloned embryo demise.


Biology of Reproduction | 2007

Dynamic Reprogramming of Histone Acetylation and Methylation in the First Cell Cycle of Cloned Mouse Embryos

Fengchao Wang; Zhaohui Kou; Yu Zhang; Shaorong Gao

Abstract Epigenetic reprogramming is thought to play an important role in the development of cloned embryos reconstructed by somatic cell nuclear transfer (SCNT). In the present study, dynamic reprogramming of histone acetylation and methylation modifications was investigated in the first cell cycle of cloned embryos. Our results demonstrated that part of somatic inherited lysine acetylation on core histones (H3K9, H3K14, H4K16) could be quickly deacetylated following SCNT, and reacetylation occurred following activation treatment. However, acetylation marks of the other lysine residues on core histones (H4K8, H4K12) persisted in the genome of cloned embryos with only mild deacetylation occurring in the process of SCNT and activation treatment. The somatic cloned embryos established histone acetylation modifications resembling those in normal embryos produced by intracytoplasmic sperm injection through these two different programs. Moreover, treatment of cloned embryos with a histone deacetylase inhibitor, Trichostatin A (TSA), improved the histone acetylation in a manner similar to that in normal embryos, and the improved histone acetylation in cloned embryos treated with TSA might contribute to improved development of TSA-treated clones. In contrast to the asymmetric histone H3K9 tri- and dimethylation present in the parental genomes of fertilized embryos, the tri- and dimethylations of H3K9 were gradually demethylated in the cloned embryos, and this histone H3K9 demethylation may be crucial for gene activation of cloned embryos. Together, our results indicate that dynamic reprogramming of histone acetylation and methylation modifications in cloned embryos is developmentally regulated.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Proteome of mouse oocytes at different developmental stages

Shufang Wang; Zhaohui Kou; Zhiyi Jing; Yu Zhang; Xinzheng Guo; Mengqiu Dong; Ian Wilmut; Shaorong Gao

The mammalian oocyte possesses powerful reprogramming factors, which can reprogram terminally differentiated germ cells (sperm) or somatic cells within a few cell cycles. Although it has been suggested that use of oocyte-derived transcripts may enhance the generation of induced pluripotent stem cells, the reprogramming factors in oocytes are undetermined, and even the identified proteins composition of oocytes is very limited. In the present study, 7,000 mouse oocytes at different developmental stages, including the germinal vesicle stage, the metaphase II (MII) stage, and the fertilized oocytes (zygotes), were collected. We successfully identified 2,781 proteins present in germinal vesicle oocytes, 2,973 proteins in MII oocytes, and 2,082 proteins in zygotes through semiquantitative MS analysis. Furthermore, the results of the bioinformatics analysis indicated that different protein compositions are correlated with oocyte characteristics at different developmental stages. For example, specific transcription factors and chromatin remodeling factors are more abundant in MII oocytes, which may be crucial for the epigenetic reprogramming of sperm or somatic nuclei. These results provided important knowledge to better understand the molecular mechanisms in early development and may improve the generation of induced pluripotent stem cells.


Nature Genetics | 2006

Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer

Li-Ying Sung; Shaorong Gao; Hongmei Shen; Hui Yu; Yifang Song; Sadie Smith; C.-C. Chang; Kimiko Inoue; Lynn Kuo; Jin Lian; Ao Li; X. Cindy Tian; David Tuck; Sherman M. Weissman; Xiangzhong Yang; Tao Cheng

Since the creation of Dolly via somatic cell nuclear transfer (SCNT), more than a dozen species of mammals have been cloned using this technology. One hypothesis for the limited success of cloning via SCNT (1%–5%) is that the clones are likely to be derived from adult stem cells. Support for this hypothesis comes from the findings that the reproductive cloning efficiency for embryonic stem cells is five to ten times higher than that for somatic cells as donors and that cloned pups cannot be produced directly from cloned embryos derived from differentiated B and T cells or neuronal cells. The question remains as to whether SCNT-derived animal clones can be derived from truly differentiated somatic cells. We tested this hypothesis with mouse hematopoietic cells at different differentiation stages: hematopoietic stem cells, progenitor cells and granulocytes. We found that cloning efficiency increases over the differentiation hierarchy, and terminally differentiated postmitotic granulocytes yield cloned pups with the greatest cloning efficiency.


Nature | 2016

Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos.

Xiaoyu Liu; Chenfei Wang; Wenqiang Liu; Chong Li; Xiaochen Kou; Jiayu Chen; Yanhong Zhao; Haibo Gao; Hong Wang; Yong Zhang; Yawei Gao; Shaorong Gao

Histone modifications have critical roles in regulating the expression of developmental genes during embryo development in mammals. However, genome-wide analyses of histone modifications in pre-implantation embryos have been impeded by the scarcity of the required materials. Here, by using a small-scale chromatin immunoprecipitation followed by sequencing (ChIP–seq) method, we map the genome-wide profiles of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3), which are associated with gene activation and repression, respectively, in mouse pre-implantation embryos. We find that the re-establishment of H3K4me3, especially on promoter regions, occurs much more rapidly than that of H3K27me3 following fertilization, which is consistent with the major wave of zygotic genome activation at the two-cell stage. Furthermore, H3K4me3 and H3K27me3 possess distinct features of sequence preference and dynamics in pre-implantation embryos. Although H3K4me3 modifications occur consistently at transcription start sites, the breadth of the H3K4me3 domain is a highly dynamic feature. Notably, the broad H3K4me3 domain (wider than 5 kb) is associated with higher transcription activity and cell identity not only in pre-implantation development but also in the process of deriving embryonic stem cells from the inner cell mass and trophoblast stem cells from the trophectoderm. Compared to embryonic stem cells, we found that the bivalency (that is, co-occurrence of H3K4me3 and H3K27me3) in early embryos is relatively infrequent and unstable. Taken together, our results provide a genome-wide map of H3K4me3 and H3K27me3 modifications in pre-implantation embryos, facilitating further exploration of the mechanism for epigenetic regulation in early embryos.


Nature | 2016

Allelic reprogramming of the histone modification H3K4me3 in early mammalian development

Bingjie Zhang; Hui Zheng; Bo Huang; Wenzhi Li; Yunlong Xiang; Xu Peng; Jia Ming; Xiaotong Wu; Yu Zhang; Qianhua Xu; Wenqiang Liu; Xiaochen Kou; Yanhong Zhao; Wenteng He; Chong Li; Bo Chen; Yuanyuan Li; Qiujun Wang; Jing Ma; Qiangzong Yin; Kehkooi Kee; Anming Meng; Shaorong Gao; Feng Xu; Jie Na; Wei Xie

Histone modifications are fundamental epigenetic regulators that control many crucial cellular processes. However, whether these marks can be passed on from mammalian gametes to the next generation is a long-standing question that remains unanswered. Here, by developing a highly sensitive approach, STAR ChIP–seq, we provide a panoramic view of the landscape of H3K4me3, a histone hallmark for transcription initiation, from developing gametes to post-implantation embryos. We find that upon fertilization, extensive reprogramming occurs on the paternal genome, as H3K4me3 peaks are depleted in zygotes but are readily observed after major zygotic genome activation at the late two-cell stage. On the maternal genome, we unexpectedly find a non-canonical form of H3K4me3 (ncH3K4me3) in full-grown and mature oocytes, which exists as broad peaks at promoters and a large number of distal loci. Such broad H3K4me3 peaks are in contrast to the typical sharp H3K4me3 peaks restricted to CpG-rich regions of promoters. Notably, ncH3K4me3 in oocytes overlaps almost exclusively with partially methylated DNA domains. It is then inherited in pre-implantation embryos, before being erased in the late two-cell embryos, when canonical H3K4me3 starts to be established. The removal of ncH3K4me3 requires zygotic transcription but is independent of DNA replication-mediated passive dilution. Finally, downregulation of H3K4me3 in full-grown oocytes by overexpression of the H3K4me3 demethylase KDM5B is associated with defects in genome silencing. Taken together, these data unveil inheritance and highly dynamic reprogramming of the epigenome in early mammalian development.


Cell Research | 2012

Genetic correction of β-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice

Yixuan Wang; Chen-Guang Zheng; Yonghua Jiang; Jiqin Zhang; Jiayu Chen; Chao Yao; Qingguo Zhao; Sheng Liu; Ke Chen; Juan Du; Ze Yang; Shaorong Gao

The generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells by over-expression of several transcription factors has the potential to cure many genetic and degenerative diseases currently recalcitrant to traditional clinical approaches. One such genetic disease is β-thalassemia major (Cooleys anemia). This disease is caused by either a point mutation or the deletion of several nucleotides in the β-globin gene, and it threatens the lives of millions of people in China. In the present study, we successfully generated iPSCs from fibroblasts collected from a 2-year-old patient who was diagnosed with a homozygous 41/42 deletion in his β-globin gene. More importantly, we successfully corrected this genetic mutation in the β-thalassemia iPSCs by homologous recombination. Furthermore, transplantation of the genetically corrected iPSCs-derived hematopoietic progenitors into sub-lethally irradiated immune deficient SCID mice showed improved hemoglobin production compared with the uncorrected iPSCs. Moreover, the generation of human β-globin could be detected in the mice transplanted with corrected iPSCs-derived hematopietic progenitors. Our study provides strong evidence that iPSCs generated from a patient with a genetic disease can be corrected by homologous recombination and that the corrected iPSCs have potential clinical uses.


Biology of Reproduction | 2002

Germinal Vesicle Material Is Essential for Nucleus Remodeling after Nuclear Transfer

Shaorong Gao; Bianca Gasparrini; Michelle McGarry; Tricia Ferrier; Judy Fletcher; Linda Harkness; Paul A. De Sousa; Ian Wilmut

Abstract Successful cloning by nuclear transfer has been reported with somatic or embryonic stem (ES) cell nucleus injection into enucleated mouse metaphase II oocytes. In this study, we enucleated mouse oocytes at the germinal vesicle (GV) or pro-metaphase I (pro-MI) stage and cultured the cytoplasm to the MII stage. Nuclei from cells of the R1 ES cell line were injected into both types of cytoplasm to evaluate developmental potential of resulting embryos compared to MII cytoplasmic injection. Immunocytochemical staining revealed that a spindle started to organize 30 min after nucleus injection into all three types of cytoplasm. A well-organized bipolar spindle resembling an MII spindle was present in both pro-MI and MII cytoplasm 1 h after injection with ES cells. However, in the mature GV cytoplasm, chromosomes were distributed throughout the cytoplasm and a much bigger spindle was formed. Pseudopronucleus formation was observed in pro-MI and MII cytoplasm after activation treatment. Although no pronucleus formation was found in GV cytoplasm, chromosomes segregated into two groups in response to activation. Only 8.1% of reconstructed embryos with pro-MI cytoplasm developed to the morula stage after culture in CZB medium. In contrast, 53.5% of embryos reconstructed with MII cytoplasm developed to the morula/blastocyst stage, and 5.3% of transferred embryos developed to term. These results indicate that GV material is essential for nucleus remodeling after nuclear transfer.

Collaboration


Dive into the Shaorong Gao's collaboration.

Top Co-Authors

Avatar

Jiayu Chen

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhaohui Kou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith E. Latham

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhiming Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lan Kang

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge