Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaoshan Li is active.

Publication


Featured researches published by Shaoshan Li.


Journal of Photochemistry and Photobiology B-biology | 2002

Temperature-dependent formation and photorepair of DNA damage induced by UV-B radiation in suspension-cultured tobacco cells.

Shaoshan Li; Markus Paulsson; Lars Olof Björn

Two photoproducts of DNA damage, i.e. cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs), induced by UV-B radiation in suspension-cultured tobacco cells were quantified by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. CPDs and 6-4PPs were induced in tobacco cells by UV-B radiation. Photorepair of CPDs was faster than that of 6-4PPs. UV-B radiation induces formation of CPDs and 6-4PPs even at 0 degrees C, but low temperature significantly decreases the UV-B-induced (in contrast to UV-C-induced) formation of CPDs and 6-4PPs. Low temperature also retarded the removal of CPDs and 6-4PPs under white light, and almost no photorepair of CPDs and 6-4PPs was detected at 0 degrees C. When purified DNA from tobacco cells grown in darkness was irradiated with UV-B, formation of CPDs and 6-4PPs took place at the same speed at different temperatures. It indicated that formation of CPDs and 6-4PPs induced by UV-B was temperature-independent in a non-cellular system. Based on our results for suspension-cultured tobacco cells, not only the photorepair but also UV-B-induced formation of CPDs and 6-4PPs are temperature-dependent.


Photochemical and Photobiological Sciences | 2009

Arabidopsis RADICAL-INDUCED CELL DEATH1 is involved in UV-B signaling.

Lei Jiang; Yan Wang; Lars Olof Björn; Shaoshan Li

The Arabidopsis radical-induced cell death1 (rcd1) mutant is sensitive to ozone fumigation and apoplastic superoxide, but tolerant to methyl viologen. In the present article, we report that the rcd1 mutant is also tolerant to supplementary UV-B radiation. The rcd1-1 mutant exhibits less accumulation of TT dimers, increased hypocotyl growth inhibition and higher accumulation of flavonoids under supplemental UV-B radiation. Moreover, the expression of HY5 (elongated hypocotyl5) is increased in the mutant after UV-B treatment. Gene expression downstream of UV-B signaling reveals that COP1 (constitutively photomorphogenic1)-regulated genes have an elevated expression in rcd1-1 mutant under UV-B radiation, while expression of UVR8 (UV resistance locus 8)-regulated and HY5-independent genes are not changed. Interestingly, the expression of RCD1 genes is not significantly changed by UV-B radiation. Previous study has shown that STO protein is interacting with RCD1 in vitro. Here, we found the mRNA level of STO (salt tolerance) is greatly increased in rcd1-1 mutant after UV-B radiation. However, UV-B-induced HY5 and CHS expression is partially inhibited in sto mutant. Based on the above results, it is deduced that the RCD1, working together with STO, is involved in Arabidopsis UV-B signaling.


Molecular Biology of the Cell | 2014

A Vps21 endocytic module regulates autophagy

Yong Chen; Fan Zhou; Shenshen Zou; Sidney Yu; Shaoshan Li; Dan Li; Jing-Zhen Song; Hui Li; Zhiyi He; Bing Hu; Lars Olof Björn; Zhanna Lipatova; Yongheng Liang; Zhiping Xie; Nava Segev

Vps21 plays a role in autophagy in addition to its role in endocytosis. Individual deletions of members of the endocytic Vps21 module, including a GEF and four effectors, result in autophagy defects and accumulation of autophagosomal clusters. Therefore the endocytic Vps21 module regulates autophagy.


Traffic | 2013

Trs130 Participates in Autophagy Through GTPases Ypt31/32 in Saccharomyces cerevisiae

Shenshen Zou; Yong Chen; Yutao Liu; Nava Segev; Sidney Yu; Yan Liu; Gaoyi Min; Min Ye; Yan Zeng; Xiaoping Zhu; Bing Hong; Lars Olof Björn; Yongheng Liang; Shaoshan Li; Zhiping Xie

Trs130 is a specific component of the transport protein particle II complex, which functions as a guanine nucleotide exchange factor (GEF) for Rab GTPases Ypt31/32. Ypt31/32 is known to be involved in autophagy, although the precise mechanism has not been thoroughly studied. In this study, we investigated the potential involvement of Trs130 in autophagy and found that both the cytoplasm‐to‐vacuole targeting (Cvt) pathway and starvation‐induced autophagy were defective in a trs130ts (trs130 temperature‐sensitive) mutant. Mutant cells could not transport Atg8 and Atg9 to the pre‐autophagosomal structure/phagophore assembly site (PAS) properly, resulting in multiple Atg8 dots and Atg9 dots dispersed in the cytoplasm. Some dots were trapped in the trans‐Golgi. Genetic studies showed that the effect of the Trs130 mutation was downstream of Atg5 and upstream of Atg1, Atg13, Atg9 and Atg14 on the autophagic pathway. Furthermore, overexpression of Ypt31 or Ypt32, but not of Ypt1, rescued autophagy defects in trs130ts and trs65ts (Trs130‐HA Trs120‐myc trs65Δ) mutants. Our data provide mechanistic insight into how Trs130 participates in autophagy and suggest that vesicular trafficking regulated by GTPases/GEFs is important in the transport of autophagy proteins from the trans‐Golgi to the PAS.


Environmental Toxicology and Chemistry | 2015

Copper-induced root growth inhibition of Allium cepa var. agrogarum L. involves disturbances in cell division and DNA damage

Rong Qin; Congyue Wang; Da Chen; Lars Olof Björn; Shaoshan Li

Copper (Cu) is considered to be an indispensable microelement for plants. Excessive Cu, however, is toxic and disturbs several processes in the plant. The present study addressed the effects of ionic Cu (2.0 µM and 8.0 µM) on mitosis, the microtubule cytoskeleton, and DNA in root tip cells of Allium cepa var. agrogarum L. to better understand Cu toxicity on plant root systems. The results indicated that Cu accumulated in roots and that root growth was inhibited dramatically in Cu treatment groups. Chromosomal aberrations (for example, C-mitosis, chromosome bridges, chromosome stickiness, and micronucleus) were observed, and the mitotic index decreased during Cu treatments at different concentrations. Microtubules were one of the target sites of Cu toxicity in root tip meristematic cells, and Cu exposure substantially impaired microtubule arrangements. The content of α-tubulin decreased following 36 h of exposure to 2.0 µM or 8.0 µM of Cu in comparison with the control group. Copper increased DNA damage and suppressed cell cycle progression. The above toxic effects became more serious with increasing Cu concentration and prolonged exposure time.


Functional Plant Biology | 2008

Two separate UV-B radiation wavelength regions control expression of different molecular markers in Arabidopsis thaliana

Irina Kalbina; Shaoshan Li; Georgi Kalbin; Lars Olof Björn; Åke Strid

Fluence-response curves were obtained at nine wavelengths in the interval 280-360 nm for mRNA transcripts of four molecular markers induced by ultraviolet-B (UV-B) radiation in Arabidopsis thaliana (L.) Heynh.: CHS (encoding chalcone synthase), PDX1.3 (encoding an enzyme involved in formation of pyridoxine), MEB5.2 (encoding a protein with unknown function but which is strongly upregulated by UV-B), and LHCB1*3 (encoding a chlorophyll a/b binding protein). Intact Arabidopsis plants were irradiated for 3 h using a high intensity deuterium radiation source and narrow bandwith filters without supplementary PAR. The results obtained suggest the existence of two distinct UV-B signal responses: one sensitive between 300 and 310 nm and the other sensitive around 280-290 nm. Among the investigated molecular markers, CHS and PDX1.3 were regulated through the chromophore absorbing around 300 nm, whereas MEB5.2 and LHCB1*3 were regulated through the chromophore absorbing at 280-290 nm. The results obtained show that at least two signal transduction pathways exist that regulate gene expression as a result of absorption of UV-B radiation in plants.


Plant Signaling & Behavior | 2012

Sensing of UV-B radiation by plants

Lei Jiang; Yan Wang; Lars Olof Björn; Jun-Xian He; Shaoshan Li

Daylight UV-B (UV-B) radiation (280–315 nm) is, because of its photochemical effects and potential destructive impact, an important environmental factor for plants. After decades of fruitless attempts, a receptor molecule, UVR8, for sensing of ambient UV-B radiation by plants has been characterized, and the initial steps in signal transduction have been identified. There are, however, other signaling pathways, and there are apparent contradictions in the literature. There is still much to find out about the complex signaling network in plants for processing of information about the daylight surrounding them.


Ecotoxicology and Environmental Safety | 2017

Effects of Ca addition on the uptake, translocation, and distribution of Cd in Arabidopsis thaliana

Lihua Zeng; Ting Zhu; Ya Gao; Yutao Wang; Chanjuan Ning; Lars Olof Björn; Da Chen; Shaoshan Li

Cadmium (Cd) pollution poses a risk to human health for its accumulation in soil and crops, but this can be alleviated by calcium (Ca) addition. However, its mechanism remains unclear yet. In this study, Arabidopsis thaliana was used to explore the alleviating effects of Ca on Cd toxicity and its specific function during uptake, upward-translocation, and distribution of Cd. Supplementing plants with 5mM CaCl2 alleviated the intoxication symptoms caused by 50μM CdCl2, such as smaller leaves, early bolting and root browning. Ca addition decreased uptake of Cd, possibly by reducing the physical adsorption of Cd since the root cell membrane was well maintained and lignin deposition was decreased as well, and by decreasing symplastic Cd transport. Expression of the genes involved (AtZIP2 and AtZIP4) was also decreased. In addition, Ca accumulated in the plant shoot to help facilitating the upward-translocation of Cd, with evidence of higher translocation factor and expression of genes that were involved in Ca transport (AtPCR1) and Cd xylem loading (AtHMA2 and AtHMA4). Dithizone-staining of Cd in leaves showed that in Cd+Ca-treated plants, Ca addition initially protected the leaf stomata by preventing Cd from entering guard cells, but with prolonged Cd treatment facilitated the Cd accumulation around trichomes and maybe its excretion. We conclude that Ca promotes the upward-translocation of Cd and changes its distribution in leaves. The results may have relevance for bioremediation.


Applied and Environmental Microbiology | 2015

Community Dynamics of Arbuscular Mycorrhizal Fungi in High-Input and Intensively Irrigated Rice Cultivation Systems

Yutao Wang; Ting Li; Yingwei Li; Lars Olof Björn; Søren Rosendahl; Pål Axel Olsson; Shaoshan Li; Xuelin Fu

ABSTRACT Application of a mycorrhizal inoculum could be one way to increase the yield of rice plants and reduce the application of fertilizer. We therefore studied arbuscular mycorrhizal fungi (AMF) in the roots of wetland rice (Oryza sativa L.) collected at the seedling, tillering, heading, and ripening stages in four paddy wetlands that had been under a high-input and intensively irrigated rice cultivation system for more than 20 years. It was found that AMF colonization was mainly established in the heading and ripening stages. The AMF community structure was characterized in rhizosphere soils and roots from two of the studied paddy wetlands. A fragment covering the partial small subunit (SSU), the whole internal transcribed spacer (ITS), and the partial large subunit (LSU) rRNA operon regions of AMF was amplified, cloned, and sequenced from roots and soils. A total of 639 AMF sequences were obtained, and these were finally assigned to 16 phylotypes based on a phylogenetic analysis, including 12 phylotypes from Glomeraceae, one phylotype from Claroideoglomeraceae, two phylotypes from Paraglomeraceae, and one unidentified phylotype. The AMF phylotype compositions in the soils were similar between the two surveyed sites, but there was a clear discrepancy between the communities obtained from root and soil. The relatively high number of AMF phylotypes at the surveyed sites suggests that the conditions are suitable for some species of AMF and that they may have an important function in conventional rice cultivation systems. The species richness of root-colonizing AMF increased with the growth of rice, and future studies should consider the developmental stages of this crop in the exploration of AMF function in paddy wetlands.


Annals of Microbiology | 2015

Distribution of arbuscular mycorrhizal fungi in four semi-mangrove plant communities

Yutao Wang; Ting Li; Yingwei Li; Shaoshan Li; Guorong Xin

To better understand the diversity and species composition of arbuscular mycorrhizal fungi (AMF) in mangrove ecosystems, the AMF colonization and distribution in four semi-mangrove plant communities were investigated. Typical AMF hyphal, vesicle and arbuscular structures were commonly observed in all the root samples, indicating that AMF are important components on the landward fringe of mangrove habitats. AMF spores were extracted from the rhizospheric soils, and an SSU rDNA fragment from each spore morph-type was amplified and sequenced for species identification. AMF species composition and diversity in the roots of each semi-mangrove species were also analyzed based on an SSU-ITS-LSU fragment, which was amplified, cloned and sequenced from root samples. In total, 11 unique AMF sequences were obtained from spores and 172 from roots. Phylogenetic analyses indicated that the sequences from the soil and roots were grouped into 5 and 14 phylotypes, respectively. AMF from six genera including Acaulospora, Claroideoglomus, Diversispora, Funneliformis, Paraglomus, and Rhizophagus were identified, with a further six phylotypes from the Glomeraceae family that could not be identified to the genus level. The AMF genus composition in the investigated semi-mangrove communities was very similar to that in the intertidal zone of this mangrove ecosystem and other investigated mangrove ecosystems, implying possible fungal adaptation to mangrove conditions.

Collaboration


Dive into the Shaoshan Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Jiang

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Yutao Wang

South China Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chanjuan Ning

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Rong Qin

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Da Chen

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge