Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaowei Chen is active.

Publication


Featured researches published by Shaowei Chen.


Journal of the American Chemical Society | 2015

Mesoporous N-Doped Carbons Prepared with Thermally Removable Nanoparticle Templates: An Efficient Electrocatalyst for Oxygen Reduction Reaction

Wenhan Niu; Ligui Li; Xiaojun Liu; Nan Wang; Ji Liu; Weijia Zhou; Zhenghua Tang; Shaowei Chen

Thermally removable nanoparticle templates were used for the fabrication of self-supported N-doped mesoporous carbons with a trace amount of Fe (Fe-N/C). Experimentally Fe-N/C was prepared by pyrolysis of poly(2-fluoroaniline) (P2FANI) containing a number of FeO(OH) nanorods that were prepared by a one-pot hydrothermal synthesis and homogeneously distributed within the polymer matrix. The FeO(OH) nanocrystals acted as rigid templates to prevent the collapse of P2FANI during the carbonization process, where a mesoporous skeleton was formed with a medium surface area of about 400 m(2)/g. Subsequent thermal treatments at elevated temperatures led to the decomposition and evaporation of the FeO(OH) nanocrystals and the formation of mesoporous carbons with the surface area markedly enhanced to 934.8 m(2)/g. Electrochemical measurements revealed that the resulting mesoporous carbons exhibited apparent electrocatalytic activity for oxygen reduction reactions (ORR), and the one prepared at 800 °C (Fe-N/C-800) was the best among the series, with a more positive onset potential (+0.98 V vs RHE), higher diffusion-limited current, higher selectivity (number of electron transfer n > 3.95 at +0.75 V vs RHE), much higher stability, and stronger tolerance against methanol crossover than commercial Pt/C catalysts in a 0.1 M KOH solution. The remarkable ORR performance was attributed to the high surface area and sufficient exposure of electrocatalytically active sites that arose primarily from N-doped carbons with minor contributions from Fe-containing species.


Journal of the American Chemical Society | 2011

One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters.

Wentao Wei; Yizhong Lu; Wei Chen; Shaowei Chen

Subnanometer-sized copper nanoclusters were prepared by a one-pot procedure based on wet chemical reduction. The structural characteristics of the 2-mercapto-5-n-propylpyrimidine-protected nanoclusters, Cu(n) (n ≤ 8), were determined by mass spectrometry. The Cu nanoclusters displayed apparent luminescence, with dual emissions at 425 and 593 nm, with quantum yields of 3.5 and 0.9%, respectively, and high electrocatalytic activity in the electoreduction of oxygen.


ACS Applied Materials & Interfaces | 2014

Three-Dimensional Hierarchical Frameworks Based on MoS2 Nanosheets Self-Assembled on Graphene Oxide for Efficient Electrocatalytic Hydrogen Evolution

Weijia Zhou; Kai Zhou; Dongman Hou; Xiaojun Liu; Guoqiang Li; Yuanhua Sang; Hong Liu; Ligui Li; Shaowei Chen

Advanced materials for electrocatalytic water splitting are central to renewable energy research. In this work, three-dimensional (3D) hierarchical frameworks based on the self-assembly of MoS2 nanosheets on graphene oxide were produced via a simple one-step hydrothermal process. The structures of the resulting 3D frameworks were characterized by using a variety of microscopic and spectroscopic tools, including scanning and transmission electron microscopies, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman scattering. Importantly, the three-dimensional MoS2/graphene frameworks might be used directly as working electrodes which exhibited apparent and stable electrocatalytic activity in hydrogen evolution reaction (HER), as manifested by a large cathodic current density with a small overpotential of -107 mV (-121 mV when loaded on a glassy-carbon electrode) and a Tafel slope of 86.3 mV/dec (46.3 mV/dec when loaded on a glassy-carbon electrode). The remarkable performance might be ascribed to the good mechanical strength and high electrical conductivity of the 3D frameworks for fast charge transport and collection, where graphene oxide provided abundant nucleation sites for MoS2 deposition and oxygen incorporation led to the formation of defect-rich MoS2 nanosheets with active sites for HER.


Small | 2013

Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures.

Jian Tian; Yuanhua Sang; Zhenhuan Zhao; Weijia Zhou; D.G. Wang; Xueliang Kang; Hong Liu; Jiyang Wang; Shaowei Chen; Huaqiang Cai; Hui Huang

CeO2 /TiO2 nanobelt heterostructures are synthesized via a cost-effective hydrothermal method. The as-prepared nanocomposites consist of CeO2 nanoparticles assembled on the rough surface of TiO2 nanobelts. In comparison with P25 TiO2 colloids, surface-coarsened TiO2 nanobelts, and CeO2 nanoparticles, the CeO2 /TiO2 nanobelt heterostructures exhibit a markedly enhanced photocatalytic activity in the degradation of organic pollutants such as methyl orange (MO) under either UV or visible light irradiation. The enhanced photocatalytic performance is attributed to a novel capture-photodegradation-release mechanism. During the photocatalytic process, MO molecules are captured by CeO2 nanoparticles, degraded by photogenerated free radicals, and then released to the solution. With its high degradation efficiency, broad active light wavelength, and good stability, the CeO2 /TiO2 nanobelt heterostructures represent a new effective photocatalyst that is low-cost, recyclable, and will have wide application in photodegradation of various organic pollutants. The new capture-photodegradation-release mechanism for improved photocatalysis properties is of importance in the rational design and synthesis of new photocatalysts.


ACS Applied Materials & Interfaces | 2010

Enhancement of Ethanol Vapor Sensing of TiO2 Nanobelts by Surface Engineering

Peiguang Hu; Guojun Du; Weijia Zhou; Jingjie Cui; Jianjian Lin; Hong Liu; Duo Liu; Jiyang Wang; Shaowei Chen

TiO(2) nanobelts were prepared by a hydrothermal process, and the structures were manipulated by surface engineering, including surface coarsening by an acid-corrosion procedure and formation of Ag-TiO(2) heterostuctures on TiO(2) nanobelts surface by photoreduction. Their performance in the detection of ethanol vapor was then examined and compared by electrical conductivity measurements at varied temperatures. Of the sensors based on the four nanobelt samples (TiO(2) nanobelts, Ag-TiO(2) nanobelts, surface-coarsened TiO(2) nanobelts, and surface-coarsened Ag-TiO(2) nanobelts), they all displayed improved sensitivity, selectivity, and short response times for ethanol vapor detection, in comparison with sensors based on other oxide nanostructures. Importantly, the formation of Ag-TiO(2) heterostuctures on TiO(2) nanobelts surface and surface coarsening of TiO(2) nanobelts were found to lead to apparent further enhancement of the sensors sensitivity, as well as a decrease of the optimal working temperature. That is, within the present experimental context, the vapor sensor based on surface-coarsened Ag-TiO(2) composite nanobelts exhibited the best performance. The sensing mechanism was interpreted on the basis of the surface depletion model, and the improvement by oxide surface engineering was accounted for by the chemical sensitization mechanism. This work provided a practical approach to the enhancement of gas sensing performance by one-dimensional oxide nanomaterials.


Journal of Materials Chemistry | 2014

MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction

Weijia Zhou; Dongman Hou; Yuanhua Sang; Shuhua Yao; Jian Zhou; Guoqiang Li; Ligui Li; Hong Liu; Shaowei Chen

Advanced materials for electrocatalytic water splitting are central to renewable energy research. In this study, MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets are produced by nitridation and sulfuration treatments of MoO3 nanobelts. The material structures are characterized by a variety of techniques including scanning electron microscopy, transmission electron microscopy, Raman scattering, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. It is found that because of nitrogen doping and the abundance of exposed active edges, the heterostructures exhibit high electronic conductivity, and more importantly, enhanced and stable electrocatalytic activity in hydrogen evolution reaction (HER), as manifested in electrochemical studies. The onset potential is found to be only −156 mV (vs. RHE), which is 105 mV more positive than that of pure MoS2 under identical experimental conditions. The corresponding Tafel slope is estimated to be 47.5 mV dec−1, even slightly less than that of commercial 10 wt% Pt/C (49.8 mV dec−1), suggesting that the reaction dynamics is largely determined by the electrochemical desorption of hydrogen. This is accounted for by nitrogen doping that leads to an enhanced electronic conductivity of the heterostructures as well as a high density of spinning electron states around the N and Mo atoms in MoS2 nanosheets that are the active sites for HER, as manifested in density functional theory studies of a N-doped MoS2 monolayer.


ACS Nano | 2008

Electrocatalytic Properties of Pt Nanowires Supported on Pt and W Gauzes

Eric P. Lee; Zhenmeng Peng; Wei Chen; Shaowei Chen; Hong Yang; Younan Xia

This paper describes the preparation of Pt- or W-supported Pt nanowires by directly growing them on the surface of Pt or W gauze. The growth direction of the nanowires was determined to be along the <111> axis. Electrochemical measurements were performed to investigate their catalytic performance toward methanol oxidation. It was found from cyclic voltammetry that the Pt nanowires supported on Pt gauze had the largest electrochemically active surface area with the greatest activity toward methanol oxidation reaction. They also exhibited a slightly slower current decay over time, indicating a higher tolerance to CO-like intermediates. Furthermore, electrochemical impedance spectroscopy measurements showed that the catalytic performance of the supported Pt nanowires prepared with a H(2)PtCl(6) precursor concentration of 40 mM is significantly better for methanol oxidation than the samples prepared at a concentration of 80 mM. This was due partially to the incomplete removal of poly(vinyl pyrrolidone) (PVP) from the more concentrated sample. In contrast, the Pt nanowires supported on W gauze performed the worst.


ACS Applied Materials & Interfaces | 2009

Janus Nanostructures Based on Au−TiO2 Heterodimers and Their Photocatalytic Activity in the Oxidation of Methanol

Sulolit Pradhan; Debraj Ghosh; Shaowei Chen

Au-TiO2 snowman-like heterodimer nanoparticles were prepared by a surface sol-gel process based on gold Janus nanoparticles whose surface-protecting monolayers consisted of a hemisphere of hydrophobic 1-hexanethiolates and the other of hydrophilic 2-(2-mercaptoethoxy)ethanol. Transmission electron microscopic measurements showed that the resulting TiO2 nanoparticles (diameter 6 nm) exhibited well-defined lattice fringes that were consistent with the (101) diffraction planes of anatase TiO2. The heterodimer nanoparticles displayed apparent photoluminescence that was ascribed to electronic transitions involving trap states of TiO2 particles, and the photocatalytic activity was manifested by the oxidative conversion of methanol into formaldehyde, which was detected quantitatively by the Nash method. The enhanced photocatalytic performance, as compared to that of the TiO2 nanoparticles alone, was ascribed to the charge separation of photogenerated electrons and holes at the Au-TiO2 interface that was facilitated by the close proximity of the gold nanoparticles. These results suggested that (i) there were at least two possible pathways for photogenerated electrons at the TiO2 conduction band, decay to the trap states and transfer to the gold nanoparticles, and (ii) energy/electron transfer from the trap states to gold nanoparticles was less efficient. In essence, this study showed that the snowman-like heterodimers might be exploited as a homogeneous photocatalytic system for the preparation of functional molecules and materials.


Physical Chemistry Chemical Physics | 2006

Electro-oxidation of formic acid catalyzed by FePt nanoparticles

Wei Chen; Jaemin Kim; Shouheng Sun; Shaowei Chen

The electrocatalytic oxidation of formic acid at a gold electrode functionalized with FePt nanoparticles was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in a mixed solution of 0.1 M HCOOH and 0.1 M HClO4. The FePt bimetallic nanoparticles, with a mean diameter of 3 nm, were prepared by a chemical reduction method. The Au/FePt nanostructured electrode was prepared firstly by the deposition of FePt nanoparticles onto a clean Au electrode surface, followed by ultraviolet ozone treatment to remove the organic coating. In CV measurements, two well-defined anodic peaks were observed at +0.20 and +0.51 V (vs. a Ag/AgCl quasi-reference). The anodic peak at +0.20 V was attributed to the oxidation of HCOOH to CO2 on surface unblocked by CO, whereas the peak at +0.51 V was ascribed to the oxidation of surface-adsorbed CO (an intermediate product of HCOOH oxidation) and further oxidation of bulk HCOOH. From the onset potential and current density of the electro-oxidation of HCOOH, FePt nanoparticles exhibit excellent electrocatalytic activities as compared to Pt and other metal alloys. EIS measurements were carried out to further examine the reaction kinetics involved in the HCOOH electro-oxidation. The EIS responses were found to be strongly dependent on electrode potentials. At potentials more positive than -0.25 V (vs. Ag/AgCl), pseudo-inductive behavior was typically observed. At potentials between +0.3 and +0.5 V, the impedance response was found to reverse from the first quadrant to the second quadrant; such negative Faradaic impedance was indicative of the presence of an inductive component due to the oxidation of surface-adsorbed CO. The impedance responses returned to normal behavior at more positive potentials (+0.6 to +0.9 V). The mechanistic variation was attributed to the formation of different intermediates (CO or oxygen containing species) on the electrode surface in different potential regions. Two equivalent circuits were proposed to model these impedance behaviors.


Journal of Materials Chemistry | 2015

MoS2 nanosheet-coated CoS2 nanowire arrays on carbon cloth as three-dimensional electrodes for efficient electrocatalytic hydrogen evolution

Jilin Huang; Dongman Hou; Yucheng Zhou; Weijia Zhou; Guoqiang Li; Zhenghua Tang; Ligui Li; Shaowei Chen

The design and engineering of low-cost and high-efficiency electrocatalysts for the hydrogen evolution reaction (HER) has attracted increasing interest in renewable energy research. Herein, MoS2 nanosheet-coated CoS2 nanowire arrays supported on carbon cloth (MoS2/CoS2/CC) were prepared by a two-step procedure that entailed the hydrothermal growth of Co(OH)2 nanowire arrays on carbon cloth followed by reaction with (NH4)2MoS4 to grow an overlayer of MoS2 nanosheets. Electrochemical studies showed that the obtained 3D electrode exhibited excellent HER activity with an overpotential of −87 mV at 10 mA cm−2, a small Tafel slope of 73.4 mV dec−1 and prominent electrochemical durability. The results presented herein may offer a new methodology for the design and engineering of effective multilevel structured catalysts for the HER based on earth-abundant components.

Collaboration


Dive into the Shaowei Chen's collaboration.

Top Co-Authors

Avatar

Ligui Li

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhenghua Tang

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Xiongwu Kang

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yang Song

University of California

View shared research outputs
Top Co-Authors

Avatar

Peiguang Hu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nan Wang

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Limei Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Yi Peng

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge