Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaoyong Huang is active.

Publication


Featured researches published by Shaoyong Huang.


Langmuir | 2009

Dendritic Superstructures and Structure Transitions of Asymmetric Poly(L-lactide-b-ethylene oxide) Diblock Copolymer Thin Films

Shaoyong Huang; Shichun Jiang; Xuesi Chen; Lijia An

The evolution of morphologies of isothermally crystallized thin films with different thicknesses of poly(L-lactide-b-ethylene oxide) diblock copolymer was observed by optical microscopy (OM) and atomic force microscopy (AFM). Dendritic superstructures stacked with lamellae were investigated in thin films with approximately 200 nm to approximately 400 nm thickness. The lamellar structure was a lozenge- or truncated-lozenge-shaped single crystal of PLLA confirmed by AFM observations. The contour of the dendritic superstructures is hexagonal, and two types of sectors, [110] and [100], can be classified in terms of the chain-folding and crystal growth directions. These phenomena are due to the interplay of the crystallization of the PLLA block, the microphase separation of the block copolymer, and the effect of the film thickness. The growth process of the superstructure can be classified into three steps: the growth of the main branches, the growth of the secondary side branches along the main branch, and the tertiary side branches. PLLA growth rates decrease in copolymer films thinner than 1 microm. Layer-layer phase structure of the copolymer driven by the crystallization of PLLA and the microphase separation of the copolymer appears to be a key factor explaining the crystallization and morphological behavior of this system.


RSC Advances | 2014

Structures and morphologies of biocompatible and biodegradable block copolymers

Shaoyong Huang; Shichun Jiang

Biocompatible and biodegradable block copolymers (BBCPs) have become increasingly important in polymer science, and have many potential applications in polymer materials. The structures of BBCPs, which are determined by the competition between crystallization, microphase separation, kinetics and processing, have a tremendous influence on the final properties and applications. In this review, the most recent advances are highlighted in the crystalline structures and morphologies of BBCPs with at least one crystalline block. Particular emphasis is placed on the influences of chemical composition, molecular architecture, crystallization pathway, and film thickness on the structures and morphologies of the block copolymers. The formation and the characteristics of the structures grown in the block copolymers are helpful for understanding the interplay between crystallization and phase segregation, morphologies, structural evolution and their applications.


CrystEngComm | 2014

Solvent micro-evaporation and concentration gradient synergistically induced crystallization of poly(L-lactide) and ring banded supra-structures with radial periodic variation of thickness

Shaoyong Huang; Hongfei Li; Huiying Wen; Donghong Yu; Shichun Jiang; Gao Li; Xuesi Chen; Lijia An

The crystalline morphology and structure of poly(L-lactide) (PLLA) in a PLLA film–chloroform system were investigated by means of wide angle X-ray diffraction (WAXD), polarized optical microscopy (POM) and atomic force microscopy (AFM). Birefringent and nonbirefringent ring banded supra-structures with radial periodic variation of thickness were obtained, which were induced by micro-evaporation of solvents and concentration gradient of PLLA. The ring banded morphologies consisted of multilayer lamellar crystals, which is a manifestation of alternating ridge and valley bands of periodic variation of thicknesses along the radial direction. The formation of the ring banded supra-structures is associated with diffusion and crystal growth induced periodic variation of concentration gradient, which is attributed to diffusion-related rhythmic growth and the competition between diffusion of polymer segments and growth of crystal lamellae. The mechanism of such banded-ring formation was explored on the basis of rhythmic growth resulting from non-linear diffusion.


CrystEngComm | 2015

Deformation and structure evolution of glassy poly(lactic acid) below the glass transition temperature

Chengbo Zhou; Hongfei Li; Yao Zhang; Feifei Xue; Shaoyong Huang; Huiying Wen; Jingqing Li; Jesper de Claville Christiansen; Donghong Yu; Zhonghua Wu; Shichun Jiang

Poly(lactic acid) (PLA) is a bio-based and compostable thermoplastic polyester that has rapidly evolved into a competitive commodity material over the last decade. One key bottleneck in expanding the field of application of PLA is the control of its structure and properties. Therefore, in situ investigations under cooling are necessary for understanding the relationship between them. The most intriguing feature of a supercooled liquid is its dramatic rise in viscosity as it is cooled toward the glass transition temperature (Tg) though accompanied by very little change in the structural features observable by typical X-ray experiments. The deformation behaviors and structure evolution of glassy PLA during uniaxially stretching below Tg were investigated in situ by synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) techniques. The stretched samples were measured by differential scanning calorimetry (DSC). The obtained results showed that the deformation and yield stress of glassy PLA are strongly dependent on the stretching temperatures together with the transition from mesophase to mesocrystal and the formation of cavities. With the increase in drawing temperature, the onset of the mesocrystal formation is delayed to a higher strain value, whereas corresponding to the same critical orientation degree of amorphous chains (fam ≈ 0.45). The DSC results indicated that the post-Tg endothermic peak corresponding to the melting of mesocrystal appears and shifts to a higher temperature with increasing stretching temperature, followed by the down-shifts (to a lower temperature) of the exothermic peak of cold crystallization of PLA. The appearance of a small exothermic peak just before the melting peak related to the transition of the α′ to α crystal implies the formation of an α′ crystal during cold crystallization in the drawn PLA samples. The structure evolution of glassy PLA stretched below Tg was discussed in details.


Chinese Journal of Polymer Science | 2016

Effects of molecular weight on the crystallization and melting behaviors of poly(L-lactide)

Sheng Xiang; Shao Jun; Gao Li; Xinchao Bian; Lidong Feng; Xuesi Chen; Fengqi Liu; Shaoyong Huang

In this study, a series of monodispersed poly(L-lactide) (PLLA) were synthesized by the ring-opening polymerization with Schiff base aluminum catalyst, and the effects of the number-average molecular weight (Mn) on the crystallization and melting behaviors of PLLA were investigated by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). The total crystallization rate of PLLA was Mn-dependent, which reached the maximum value for PLLA with Mn of 18.6 kg/mol. In addition, when Mn of PLLA was 18.6 kg/mol, the melting enthalpy (ΔHm) showed a maximum value (87.1 J/g), which was the highest reported value till now. The critical temperature for change of crystal formation from δ- to α-form crystals increased in the isothermal crystallization process with Mn increasing. In the reheating procedure, high-Mn PLLA demonstrated a small exothermal peak prior to the dominant melting peak, corresponding to crystal transition from δ- to α-form, but low-Mn PLLA didn’t show the peak of crystal transition. These different crystallization and melting behaviors were attributed to the different chain mobility of PLLA with different Mn.


Polymer Chemistry | 2015

Crystalline structures and crystallization behaviors of poly(L-lactide) in poly(L-lactide)/graphene nanosheet composites

Jingqing Li; Peitao Xiao; Hongfei Li; Yao Zhang; Feifei Xue; Baojing Luo; Shaoyong Huang; Yingrui Shang; Huiying Wen; Jesper de Claville Christiansen; Donghong Yu; Shichun Jiang

Poly(L-lactide) (PLLA)/graphene nanosheet (GNS) composites and pure PLLA were prepared by the solution blending method. Crystalline structures and crystallization behaviors of PLLA in the composite were investigated by XRD, POM, SAXS, and DSC. It was found that α′ form PLLA formation seemed to be more preferred than α form PLLA formation in PLLA/GNS composites at crystallization temperatures Tcs within the α′–α crystal formation transition region due to the existence of GNSs, resulting in an obvious shift of the α′–α crystal formation transition of PLLA in PLLA/GNSs towards high Tcs compared with that of pure PLLA. At Tcs below α′–α crystal formation transition, the formed α′ crystal turned to be more imperfect due to GNS addition, while at Tcs above α′–α crystal formation transition, the crystal structure of α form PLLA was not affected by GNSs. Further POM observations at high Tcs with only α crystal formed showed that PLLA spherulites were well formed in both PLLA/GNSs and pure PLLA, however with very different crystallization kinetics while isothermally crystallizing at different Tcs. The PLLA crystallization process of PLLA in PLLA/GNSs was accelerated by GNSs with both the nucleation rate and spherulite growth rate increased mainly because of the increasing segmental mobility of PLLA chains due to GNS addition; whereas, GNSs showed no observable influence on the determined zero growth temperature Tzg of α form PLLA and the Tzg was estimated lower than the equilibrium melting point of PLLA, indicating that the crystal growth of PLLA is mediated by a transient mesophase with the transition temperature of Tzg between the mesophase and melt not influenced by GNSs in PLLA. Synchrotron on-line SAXS results revealed that the long periods of PLLA in PLLA/GNS composites isothermally crystallized at different Tcs are much smaller than those in pure PLLA. The GNSs are helpful in forming more perfect recrystallized α form PLLA after the α′ form PLLA is melted with increasing Tcs. The presence of GNSs resulted in imperfect α form PLLA from melt directly when it is isothermally crystallized at different Tcs within the temperature range of α′–α crystal formation transition.


CrystEngComm | 2013

Shear effects on crystalline structures of poly(L-lactide)

Peitao Xiao; Hongfei Li; Shaoyong Huang; Huiying Wen; Donghong Yu; Yingrui Shang; Jingqing Li; Zhonghua Wu; Lijia An; Shichun Jiang

The shearing effects of sheared polymer melts on their finally formed crystalline structures of poly(L-lactide) (PLLA) were investigated by means of small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD). The results of WAXD prove that shear has no effects on the crystal structure of PLLA. The SAXS results demonstrate that both of the long period and the thickness of crystalline lamellae increase with rising shear rates when vertical to the shear direction, but remains constant when being parallel to the shear direction. The structural changes for samples prepared with different shear temperature or under the same shear strain but different shear rate were investigated. The mesophase of polymer melts and shearing effects on their pre-ordered phase turned out to be the key factor affecting the crystal structure of PLLA under different shearing conditions.


RSC Advances | 2013

Chloroform micro-evaporation induced ordered structures of poly(L-lactide) thin films

Shaoyong Huang; Hongfei Li; Yingrui Shang; Donghong Yu; Gao Li; Shichun Jiang; Xuesi Chen; Lijia An

Self-assembly of poly(L-lactide) (PLLA) in thin films induced by chloroform micro-evaporation was investigated by microscopic techniques and X-ray diffraction studies. A film-thickness dependent on highly ordered structures has been derived from disordered films. Ring-banded spherulitic and dendritic morphologies with radial periodic variation of thicknesses were formed in dilute solution driven by micro-evaporation of the solvent. Bunched morphologies stacked with a flat-on lozenge-shaped lamellae were created in thinner films. The formation of the concentric ring banded structures was attributed to the periodic rhythmic growth associated with radial periodic changes in the concentration gradient of PLLA. A diffusion-induced rhythmic growth mechanism was proposed to explain the formation of the ring banded morphologies with periodic variation of thicknesses.


CrystEngComm | 2013

Crystalline structures of poly(L-lactide) formed under pressure and structure transitions with heating

Shaoyong Huang; Hongfei Li; Donghong Yu; Shichun Jiang; Xuesi Chen; Lijia An

The isothermally crystallized poly(L-lactide) (PLLA) samples were obtained at 135 °C under pressures (Pc) ranging from 1 bar to 2.5 kbar. The crystalline structures, the structure transition, and thermal properties of the prepared samples were investigated by wide-angle X-ray diffraction (WAXD), real time synchrotron small-angle X-ray scattering (SR-SAXS) and differential scanning calorimetry (DSC) during this process. The structural parameters, such as the size of crystallites, the inverse spacing, the long periods and lamellae thicknesses decrease with pressure increasing. Based on the peculiarities of crystalline structure and crystallization behaviors, low and high pressure regions were revealed: disordered α crystal was formed in the high pressure region (>1 kbar). A layer located intermediate between crystalline and melt-like regions was observed, which finally took on crystalline order. Reformation, disorder to order transformation, and recrystallization during heating completely changed the previous crystalline and stacking structure, a more stable crystalline structure was newly formed. The melting behaviors of samples indicate the crystalline and stacking structure formed under high pressure are more stable. Operation of lateral growth and thickness growth can explain well the influence of pressure on the structure, stability and the disorder to order transformation.


RSC Advances | 2016

Temperature dependence of poly(lactic acid) mechanical properties

Chengbo Zhou; Huilong Guo; Jingqing Li; Shaoyong Huang; Hongfei Li; Yanfeng Meng; Donghong Yu; Jesper de Claville Christiansen; Shichun Jiang

The mechanical properties of polymers are not only determined by their structures, but also related to the temperature field in which they are located. The yield behaviors, Youngs modulus and structures of injection-molded poly(lactic acid) (PLA) samples after annealing at different temperatures were measured during stretching within 30–150 °C. The in situ photographs were recorded with a camera to observe deformation behavior during stretching. The less ordered α′ form crystal of PLA can be formed in the un-annealed PLA samples and those that were annealed at 70 °C with low crystallinity. The crystallinity increases with increasing annealing temperature and α form crystal is formed when the annealing temperature is higher than 100 °C. The stretched samples with low crystallinity show the first yield at draw temperatures below the glass transition temperature (Tg) and the second yield above Tg. For the samples annealed between 80 and 120 °C, a peculiar double yield appears when stretched within 50–60 °C and only the first or the second yield can be found at the lower and higher draw temperatures. The yield strain and yield stress together with Youngs modulus were obtained and discussed in terms of the effects of the draw temperature and crystalline structure of PLA samples.

Collaboration


Dive into the Shaoyong Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongfei Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuesi Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lijia An

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gao Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huiying Wen

Northeast Forestry University

View shared research outputs
Researchain Logo
Decentralizing Knowledge