Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaoyu Ge is active.

Publication


Featured researches published by Shaoyu Ge.


Nature | 2006

GABA regulates synaptic integration of newly generated neurons in the adult brain

Shaoyu Ge; Eyleen L. K. Goh; Kurt A. Sailor; Yasuji Kitabatake; Guo Li Ming; Hongjun Song

Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.


Cell | 2007

Disrupted-In-Schizophrenia 1 Regulates Integration of Newly Generated Neurons in the Adult Brain

Xin Duan; Jay H. Chang; Shaoyu Ge; Regina L. Faulkner; Ju Young Kim; Yasuji Kitabatake; Xiao Bo Liu; Chih Hao Yang; J. Dedrick Jordan; Dengke K. Ma; Cindy Y. Liu; Sundar Ganesan; Hwai Jong Cheng; Guo Li Ming; Bai Lu; Hongjun Song

Adult neurogenesis occurs throughout life in discrete regions of the adult mammalian brain. Little is known about the mechanism governing the sequential developmental process that leads to integration of new neurons from adult neural stem cells into the existing circuitry. Here, we investigated roles of Disrupted-In-Schizophrenia 1 (DISC1), a schizophrenia susceptibility gene, in adult hippocampal neurogenesis. Unexpectedly, downregulation of DISC1 leads to accelerated neuronal integration, resulting in aberrant morphological development and mispositioning of new dentate granule cells in a cell-autonomous fashion. Functionally, newborn neurons with DISC1 knockdown exhibit enhanced excitability and accelerated dendritic development and synapse formation. Furthermore, DISC1 cooperates with its binding partner NDEL1 in regulating adult neurogenesis. Taken together, our study identifies DISC1 as a key regulator that orchestrates the tempo of functional neuronal integration in the adult brain and demonstrates essential roles of a susceptibility gene for major mental illness in neuronal development, including adult neurogenesis.


Nature | 2012

Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision

Juan Song; Chun Zhong; Michael A. Bonaguidi; Gerald J. Sun; Derek Y Hsu Y Hsu; Yan Gu; Konstantinos Meletis; Z. Josh Huang; Shaoyu Ge; Grigori Enikolopov; Karl Deisseroth; Bernhard Lüscher; Kimberly M. Christian; Guo Li Ming; Hongjun Song

Adult neurogenesis arises from neural stem cells within specialized niches. Neuronal activity and experience, presumably acting on this local niche, regulate multiple stages of adult neurogenesis, from neural progenitor proliferation to new neuron maturation, synaptic integration and survival. It is unknown whether local neuronal circuitry has a direct impact on adult neural stem cells. Here we show that, in the adult mouse hippocampus, nestin-expressing radial glia-like quiescent neural stem cells (RGLs) respond tonically to the neurotransmitter γ-aminobutyric acid (GABA) by means of γ2-subunit-containing GABAA receptors. Clonal analysis of individual RGLs revealed a rapid exit from quiescence and enhanced symmetrical self-renewal after conditional deletion of γ2. RGLs are in close proximity to terminals expressing 67-kDa glutamic acid decarboxylase (GAD67) of parvalbumin-expressing (PV+) interneurons and respond tonically to GABA released from these neurons. Functionally, optogenetic control of the activity of dentate PV+ interneurons, but not that of somatostatin-expressing or vasoactive intestinal polypeptide (VIP)-expressing interneurons, can dictate the RGL choice between quiescence and activation. Furthermore, PV+ interneuron activation restores RGL quiescence after social isolation, an experience that induces RGL activation and symmetrical division. Our study identifies a niche cell–signal–receptor trio and a local circuitry mechanism that control the activation and self-renewal mode of quiescent adult neural stem cells in response to neuronal activity and experience.


Nature Neuroscience | 2012

Optical controlling reveals time-dependent roles for adult-born dentate granule cells

Yan Gu; Maithe Arruda-Carvalho; Jia Wang; Stephen Janoschka; Sheena A. Josselyn; Paul W. Frankland; Shaoyu Ge

Accumulating evidence suggests that global depletion of adult hippocampal neurogenesis influences its function and that the timing of the depletion affects the deficits. However, the behavioral roles of adult-born neurons during their establishment of projections to CA3 pyramidal neurons remain largely unknown. We used a combination of retroviral and optogenetic approaches to birth date and reversibly control a group of adult-born neurons in adult mice. Adult-born neurons formed functional synapses on CA3 pyramidal neurons as early as 2 weeks after birth, and this projection to the CA3 area became stable by 4 weeks in age. Newborn neurons at this age were more plastic than neurons at other stages. Notably, we found that reversibly silencing this cohort of ∼4-week-old cells after training, but not cells of other ages, substantially disrupted retrieval of hippocampal memory. Our results identify a restricted time window for adult-born neurons essential in hippocampal memory retrieval.


The Journal of Physiology | 2008

Synaptic integration and plasticity of new neurons in the adult hippocampus

Shaoyu Ge; Kurt A. Sailor; Guo Li Ming; Hongjun Song

Adult neurogenesis, a developmental process encompassing the birth of new neurons from adult neural stem cells and their integration into the existing neuronal circuitry, highlights the plasticity and regenerative capacity of the adult mammalian brain. Substantial evidence suggests essential roles of newborn neurons in specific brain functions; yet it remains unclear how these new neurons make their unique contribution. Recently, a series of studies have delineated the basic steps of the adult neurogenesis process and shown that many of the distinct steps are dynamically regulated by the activity of the existing circuitry. Here we review recent findings on the synaptic integration and plasticity of newborn neurons in the adult hippocampus, including the basic biological process, unique characteristics, critical periods, and activity‐dependent regulation by the neurotransmitters GABA and glutamate. We propose that adult neurogenesis represents not merely a replacement mechanism for lost neurons, but also an ongoing developmental process in the adult brain that offers an expanded capacity for plasticity for shaping the existing circuitry in response to experience throughout life.


Nature Neuroscience | 2005

XTRPC1-dependent chemotropic guidance of neuronal growth cones

Sangwoo Shim; Eyleen L. Goh; Shaoyu Ge; Kurt A. Sailor; Joseph P. Yuan; H. Llewelyn Roderick; Martin D. Bootman; Paul F. Worley; Hongjun Song; Guo Li Ming

Calcium arising through release from intracellular stores and from influx across the plasma membrane is essential for signalling by specific guidance cues and by factors that inhibit axon regeneration. The mediators of calcium influx in these cases are largely unknown. Transient receptor potential channels (TRPCs) belong to a superfamily of Ca2+-permeable, receptor-operated channels that have important roles in sensing and responding to changes in the local environment. Here we report that XTRPC1, a Xenopus homolog of mammalian TRPC1, is required for proper growth cone turning responses of Xenopus spinal neurons to microscopic gradients of netrin-1, brain-derived neurotrophic factor and myelin-associated glycoprotein, but not to semaphorin 3A. Furthermore, XTRPC1 is required for midline guidance of axons of commissural interneurons in the developing Xenopus spinal cord. Thus, members of the TRPC family may serve as a key mediator for the Ca2+ influx that regulates axon guidance during development and inhibits axon regeneration in adulthood.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain

Regina L. Faulkner; Mi Hyeon Jang; Xiao Bo Liu; Xin Duan; Kurt A. Sailor; Ju Young Kim; Shaoyu Ge; Edward G. Jones; Guo Li Ming; Hongjun Song; Hwai Jong Cheng

New neurons are continuously generated in restricted regions of the adult mammalian brain. Although these adult-born neurons have been shown to receive synaptic inputs, little is known about their synaptic outputs. Using retrovirus-mediated birth-dating and labeling in combination with serial section electron microscopic reconstruction, we report that mossy fiber en passant boutons of adult-born dentate granule cells form initial synaptic contacts with CA3 pyramidal cells within 2 weeks after their birth and reach morphologic maturity within 8 weeks in the adult hippocampus. Knockdown of Disrupted-in-Schizophrenia-1 (DISC1) in newborn granule cells leads to defects in axonal targeting and development of synaptic outputs in the adult brain. Together with previous reports of synaptic inputs, these results demonstrate that adult-born neurons are fully integrated into the existing neuronal circuitry. Our results also indicate a role for DISC1 in presynaptic development and may have implications for the etiology of schizophrenia and related mental disorders.


Nature | 2012

Clonally related visual cortical neurons show similar stimulus feature selectivity

Ye Li; Hui Lu; Pei-Lin Cheng; Shaoyu Ge; Hua-Tai Xu; Song-Hai Shi; Yang Dan

A fundamental feature of the mammalian neocortex is its columnar organization. In the visual cortex, functional columns consisting of neurons with similar orientation preferences have been characterized extensively, but how these columns are constructed during development remains unclear. The radial unit hypothesis posits that the ontogenetic columns formed by clonally related neurons migrating along the same radial glial fibre during corticogenesis provide the basis for functional columns in adult neocortex. However, a direct correspondence between the ontogenetic and functional columns has not been demonstrated. Here we show that, despite the lack of a discernible orientation map in mouse visual cortex, sister neurons in the same radial clone exhibit similar orientation preferences. Using a retroviral vector encoding green fluorescent protein to label radial clones of excitatory neurons, and in vivo two-photon calcium imaging to measure neuronal response properties, we found that sister neurons preferred similar orientations whereas nearby non-sister neurons showed no such relationship. Interestingly, disruption of gap junction coupling by viral expression of a dominant-negative mutant of Cx26 (also known as Gjb2) or by daily administration of a gap junction blocker, carbenoxolone, during the first postnatal week greatly diminished the functional similarity between sister neurons, suggesting that the maturation of ontogenetic into functional columns requires intercellular communication through gap junctions. Together with the recent finding of preferential excitatory connections among sister neurons, our results support the radial unit hypothesis and unify the ontogenetic and functional columns in the visual cortex.


The Journal of Neuroscience | 2005

Nicotinic Acetylcholine Receptors at Glutamate Synapses Facilitate Long-Term Depression or Potentiation

Shaoyu Ge; John A. Dani

The hippocampus is a center for learning and memory that receives abundant cholinergic innervation and richly expresses nicotinic acetylcholine receptors (nAChRs). Nicotinic mechanisms acting on the hippocampus influence attention, learning, and memory. During Alzheimers dementia, nAChRs and cholinergic innervation decline in the hippocampus. Using mouse hippocampal slices, we examined the potential diversity of nAChR influences at the Schaffer collateral synapse onto CA1 pyramidal neurons. When nAChR currents were elicited locally at those excitatory synapses, various outcomes were possible depending on the relationship between the nAChR-mediated excitation and mild electrical stimulation. When mild presynaptic stimulation coincided with or preceded nAChR-induced action potentials by 1-5 s, then long-term potentiation was induced. However, if the nAChR-induced action potentials fell within 1 s before the electrical stimulation, then long-term depression resulted. Outside of these time frames, the mismatch of nAChR activity and stimulation led to short-term potentiation. The results indicate that nAChRs may have various influences over excitatory events in the hippocampus. Ongoing nAChR activity likely modulates the impact of glutamate transmission and alters the probabilities for various forms of synaptic plasticity. The fine network of cholinergic fibers running through the hippocampus forms synaptic contacts onto pyramidal cells, granule cells, and interneurons, ensuring continual modulatory influence by nicotinic mechanisms throughout the hippocampal complex. Disruption of events such as those described here may contribute to the deficits associated with the decline of nicotinic cholinergic functions during degenerative diseases such as Alzheimers dementia.


Nature Neuroscience | 2012

A role for primary cilia in glutamatergic synaptic integration of adult-born neurons

Natsuko Kumamoto; Yan Gu; Jia Wang; Stephen Janoschka; Ken-Ichi Takemaru; Joel M. Levine; Shaoyu Ge

The sequential synaptic integration of adult-born neurons has been widely examined in rodents, but the mechanisms regulating the integration remain largely unknown. The primary cilium, a microtubule-based signaling center, is essential for vertebrate development, including the development of the CNS. We examined the assembly and function of the primary cilium in the synaptic integration of adult-born mouse hippocampal neurons. Primary cilia were absent in young adult-born neurons, but assembled precisely at the stage when newborn neurons approach their final destination, further extend dendrites and form synapses with entorhinal cortical projections. Conditional deletion of cilia from adult-born neurons induced severe defects in dendritic refinement and synapse formation. Deletion of primary cilia led to enhanced Wnt and β-catenin signaling, which may account for these developmental defects. Taken together, our findings identify the assembly of primary cilia as a critical regulatory event in the dendritic refinement and synaptic integration of adult-born neurons.

Collaboration


Dive into the Shaoyu Ge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guo Li Ming

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hongjun Song

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kurt A. Sailor

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Gu

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

Jia Wang

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao Bo Liu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge