Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharad C. Phatak is active.

Publication


Featured researches published by Sharad C. Phatak.


Journal of Food Protection | 2004

Persistence of enterohemorrhagic Escherichia coli O157:H7 in soil and on leaf lettuce and parsley grown in fields treated with contaminated manure composts or irrigation water

Mahbub Islam; Michael P. Doyle; Sharad C. Phatak; Patricia D. Millner; Xiuping Jiang

Outbreaks of enterohemorrhagic Escherichia coli O157:H7 infections associated with lettuce and other leaf crops have occurred with increasing frequency in recent years. Contaminated manure and polluted irrigation water are probable vehicles for the pathogen in many outbreaks. In this study, the occurrence and persistence of E. coli O157:H7 in soil fertilized with contaminated poultry or bovine manure composts or treated with contaminated irrigation water and on lettuce and parsley grown on these soils under natural environmental conditions was determined. Twenty-five plots, each 1.8 by 4.6 m, were used for each crop, with five treatments (one without compost, three with each of the three composts, and one without compost but treated with contaminated water) and five replication plots for each treatment. Three different types of compost, PM-5 (poultry manure compost), 338 (dairy manure compost), and NVIRO-4 (alkaline-stabilized dairy manure compost), and irrigation water were inoculated with an avirulent strain of E. coli O157:H7. Pathogen concentrations were 10(7) CFU/g of compost and 10(5) CFU/ml of water. Contaminated compost was applied to soil in the field as a strip at 4.5 metric tons per hectare on the day before lettuce and parsley seedlings were transplanted in late October 2002. Contaminated irrigation water was applied only once on the plants as a treatment in five plots for each crop at the rate of 2 liters per plot 3 weeks after the seedlings were transplanted. E. coli O157:H7 persisted for 154 to 217 days in soils amended with contaminated composts and was detected on lettuce and parsley for up to 77 and 177 days, respectively, after seedlings were planted. Very little difference was observed in E. coli O157:H7 persistence based on compost type alone. E. coli O157:H7 persisted longer (by > 60 days) in soil covered with parsley plants than in soil from lettuce plots, which were bare after lettuce was harvested. In all cases, E. coli O157:H7 in soil, regardless of source or crop type, persisted for > 5 months after application of contaminated compost or irrigation water.


Applied and Environmental Microbiology | 2004

Fate of Salmonella enterica Serovar Typhimurium on Carrots and Radishes Grown in Fields Treated with Contaminated Manure Composts or Irrigation Water

Mahbub Islam; Jennie Morgan; Michael P. Doyle; Sharad C. Phatak; Patricia D. Millner; Xiuping Jiang

ABSTRACT Three different types of compost, PM-5 (poultry manure compost), 338 (dairy cattle manure compost), and NVIRO-4 (alkaline-pH-stabilized dairy cattle manure compost), and irrigation water were inoculated with an avirulent strain of Salmonella enterica serovar Typhimurium at 107 CFU g−1 and 105 CFU ml−1, respectively, to determine the persistence of salmonellae in soils containing these composts, in irrigation water, and also on carrots and radishes grown in these contaminated soils. A split-plot block design plan was used for each crop, with five treatments (one without compost, three with each of the three composts, and one without compost but with contaminated water applied) and five replicates for a total of 25 plots for each crop, with each plot measuring 1.8 × 4.6 m. Salmonellae persisted for an extended period of time, with the bacteria surviving in soil samples for 203 to 231 days, and were detected after seeds were sown for 84 and 203 days on radishes and carrots, respectively. Salmonella survival was greatest in soil amended with poultry compost and least in soil containing alkaline-pH-stabilized dairy cattle manure compost. Survival profiles of Salmonella on vegetables and soil samples contaminated by irrigation water were similar to those observed when contamination occurred through compost. Hence, both contaminated manure compost and irrigation water can play an important role in contaminating soil and root vegetables with salmonellae for several months.


Foodborne Pathogens and Disease | 2004

Persistence of Salmonella enterica Serovar Typhimurium on Lettuce and Parsley and in Soils on Which They Were Grown in Fields Treated with Contaminated Manure Composts or Irrigation Water

Mahbub Islam; Jennie Morgan; Michael P. Doyle; Sharad C. Phatak; Patricia D. Millner; Xiuping Jiang

There are many sources of pathogen contamination of vegetable crops in the field that include manure used as fertilizer and irrigation water. An avirulent strain of Salmonella enterica serovar Typhimurium was added to three different types of composts-PM-5 (poultry manure compost), 338 (dairy manure compost), and NVIRO-4 (alkaline stabilized dairy manure compost)-and irrigation water at 10(7) colony forming units (cfu)/g and 10(5) cfu/mL, respectively, to determine under field conditions the persistence of salmonellae in soils treated with these composts or irrigation water, and also on leaf lettuce and parsley grown on such treated soil. Contaminated compost was applied to soil in the field as a strip at a rate of 4.5 metric tons/hectare on the day before lettuce and parsley seedlings were transplanted. Contaminated irrigation water was applied only once on the plants at the rate of 2 liters per plot on the same day after the seedlings were transplanted. Twenty-five plots, each measuring 1.8 x 4.6 meters, were used for each crop, with five treatments (one without compost, three with each of the three composts, and one without compost but applied with contaminated water) and five replication plots for each treatment. Salmonella persisted for 161 and up to 231 days in soils amended with contaminated composts on which lettuce and parsley, respectively, were grown, and was detected for up to 63 days and 231 days on lettuce and parsley, respectively. The type of contaminated compost had minimal effect on the persistence of S. Typhimurium in soil. Occurrence of Salmonella on vegetables and survival in soil on which these vegetables were grown, irrespective of source of contamination through irrigation water or compost, were similar, suggesting both contaminated manure compost and irrigation water can play important roles in contaminating soil and vegetables with Salmonella for an extended period of time.


Journal of Food Protection | 2010

Surface and internalized Escherichia coli O157:H7 on field-grown spinach and lettuce treated with spray-contaminated irrigation water.

Marilyn C. Erickson; Cathy C. Webb; Juan Carlos Díaz-Pérez; Sharad C. Phatak; John J. Silvoy; Lindsey E. Davey; Alison S. Payton; Jean Liao; Li Ma; Michael P. Doyle

Numerous field studies have revealed that irrigation water can contaminate the surface of plants; however, the occurrence of pathogen internalization is unclear. This study was conducted to determine the sites of Escherichia coli O157:H7 contamination and its survival when the bacteria were applied through spray irrigation water to either field-grown spinach or lettuce. To differentiate internalized and surface populations, leaves were treated with a surface disinfectant wash before the tissue was ground for analysis of E. coli O157:H7 by direct plate count or enrichment culture. Irrigation water containing E. coli O157:H7 at 10(2), 10(4), or 10(6) CFU/ml was applied to spinach 48 and 69 days after transplantation of seedlings into fields. E. coli O157:H7 was initially detected after application on the surface of plants dosed at 10(4) CFU/ml (4 of 20 samples) and both on the surface (17 of 20 samples) and internally (5 of 20 samples) of plants dosed at 10(6) CFU/ml. Seven days postspraying, all spinach leaves tested negative for surface or internal contamination. In a subsequent study, irrigation water containing E. coli O157:H7 at 10(8) CFU/ml was sprayed onto either the abaxial (lower) or adaxial (upper) side of leaves of field-grown lettuce under sunny or shaded conditions. E. coli O157:H7 was detectable on the leaf surface 27 days postspraying, but survival was higher on leaves sprayed on the abaxial side than on leaves sprayed on the adaxial side. Internalization of E. coli O157:H7 into lettuce leaves also occurred with greater persistence in leaves sprayed on the abaxial side (up to 14 days) than in leaves sprayed on the adaxial side (2 days).


Journal of Food Protection | 2010

Infrequent Internalization of Escherichia coli O157:H7 into Field-Grown Leafy Greens

Marilyn C. Erickson; Cathy C. Webb; Juan Carlos Díaz-Pérez; Sharad C. Phatak; John J. Silvoy; Lindsey E. Davey; Alison S. Payton; Jean Liao; Li Ma; Michael P. Doyle

Several sources of contamination of fresh produce by Escherichia coli O157:H7 (O157) have been identified and include contaminated irrigation water and improperly composted animal waste; however, field studies evaluating the potential for internalization of O157 into leafy greens from these sources have not been conducted. Irrigation water inoculated with green fluorescent plasmid-labeled Shiga toxin-negative strains (50 ml of 10(2), 10(4), or 10(6) CFU of O157 per ml) was applied to soil at the base of spinach plants of different maturities in one field trial. In a second trial, contaminated compost (1.8 kg of 10(3) or 10(5) CFU of O157 per g) was applied to field plots (0.25 by 3.0 m) prior to transplantation of spinach, lettuce, or parsley plants. E. coli O157:H7 persisted in the soil up to harvest (day 76 posttransplantation) following application of contaminated irrigation water; however, internalized O157 was not detected in any spinach leaves or in roots exposed to O157 during the early or late growing season. Internalized O157 was detected in root samples collected 7 days after plants were contaminated in mid-season, with 5 of 30 samples testing positive for O157 by enrichment; however, O157 was not detected by enrichment in surface-disinfected roots on days 14 or 22. Roots and leaves from transplanted spinach, lettuce, and parsley did not internalize O157 for up to 50 days in the second trial. These results indicate that internalization of O157 via plant roots in the field is rare and when it does occur, O157 does not persist 7 days later.


Science | 1983

Biological Control of Yellow Nutsedge with the Indigenous Rust Fungus Puccinia canaliculata

Sharad C. Phatak; Donald R. Sumner; Homer D. Wells; Durham K. Bell; Norman C. Glaze

Yellow nutsedge (Cyperus esculentus L.) is a serious weed problem in the United States and other countries. An indigenous rust fungus [Puccinia canaliculata (Schw.) Lagerh.], pathogenic on yellow nutsedge, was released in early spring as a potential biological control agent. The fungus inhibited nutsedge flowering and new tuber formation. The fungus also dehydrated and killed nutsedge plants. The successful control of yellow nutsedge by a rust epiphytotic under experimental conditions demonstrates the potential use of the rust in an integrated weed management system.


Journal of Animal Science | 2009

Intake, digestibility, and nitrogen retention by sheep supplemented with warm-season legume haylages or soybean meal

J. L. Foster; A.T. Adesogan; J. N. Carter; Ann R. Blount; R. O. Myer; Sharad C. Phatak

The high cost of commercial supplements necessitates evaluation of alternatives for ruminant livestock fed poor quality warm-season grasses. This study determined how supplementing bahiagrass haylage (Paspalum notatum Flügge cv. Tifton 9) with soybean [Glycine max (L.) Merr.] meal or warm-season legume haylages affected the performance of lambs. Forty-two Dorper x Katadhin lambs (27.5 +/- 5 kg) were fed for ad libitum intake of bahiagrass haylage (67.8% NDF, 9.6% CP) alone (control) or supplemented with soybean meal (18.8% NDF, 51.4% CP) or haylages of annual peanut [Arachis hypogaea (L.) cv. Florida MDR98; 39.6% NDF, 18.7% CP], cowpea [Vigna unguiculata (L.) Walp. cv. Iron clay; 44.1% NDF, 16.0% CP], perennial peanut (Arachis glabrata Benth. cv. Florigraze; 40.0% NDF, 15.8% CP), or pigeonpea [Cajanus cajan (L.) Millsp. cv. GA-2; 65.0% NDF, 13.7% CP]. Haylages were harvested at the optimal maturity for maximizing yield and nutritive value, wilted to 45% DM, baled, wrapped in polyethylene plastic, and ensiled for 180 d. Legumes were fed at 50% of the dietary DM, and soybean meal was fed at 8% of the dietary DM to match the average CP concentration (12.8%) of legume haylage-supplemented diets. Lambs were fed each diet for a 14-d adaptation period and a 7-d data collection period. Each diet was fed to 7 lambs in period 1 and 4 lambs in period 2. Pigeonpea haylage supplementation decreased (P < 0.01) DM and OM intake and digestibility vs. controls. Other legume haylages increased (P < 0.05) DM and OM intake vs. controls; however, only soybean meal supplementation increased (P = 0.01) DM digestibility. All supplements decreased (P = 0.05) NDF digestibility. Except for pigeonpea haylage, all supplements increased (P < 0.01) N intake, digestibility, and retention, and the responses were greatest (P = 0.04) with soybean meal supplementation. Microbial N synthesis was reduced (P = 0.02) by pigeonpea haylage supplementation, but unaffected (P = 0.05) by other supplements. Efficiency of microbial protein synthesis was unaffected (P = 0.05) by diet. Ruminal ammonia concentration was increased (P = 0.01) by all supplements, but only soybean meal and annual peanut haylage increased (P < 0.03) plasma urea-N concentrations. Perennial peanut, annual peanut, and cowpea haylages are promising protein supplements for growing lambs.


Renewable Agriculture and Food Systems | 1991

Understory cover crops in pecan orchards: Possible management systems

Robert L. Bugg; Marianne Sarrantonio; James D. Dutcher; Sharad C. Phatak

Annual legumes and mixtures of annual legumes and grasses can perform several functions as understory cover crops in pecan orchards, such as providing nitrogenrich organic matter to improve soil fertility, or by sustaining lady beetles and other arthropods that may aid the biological control of pecan pests. Remaining questions concern selection of appropriate plant materials; whether to use cover crops singly or in mixtures; how to ensure reseeding as well as a substantial N contribution; whether, when, and how to use mowing and tillage; and fertilization options. Different considerations apply when dealing with cool- vs. warm-season cover crops. With minor adjustments, growers could adapt present cultural practices to include cool-season cover crops. These could be used throughout the orchard, by establishing appropriate self-reseeding species and avoiding both excessive mowing and indiscriminate placement of N-rich fertilizers. Within alleys, alternating 2-m strips of cool-season cover crops could be tilled in mid to late April or allowed to mature. The tilled strips would supply N to pecan trees immediately, whereas the adjoining untilled (remnant) strips could be mowed after seed is mature, to ensure dispersal of seed and reestablishment of cover crops over the entire alley. Cool-season annual legumes that die or are killed in late spring will probably furnish N and other nutrients at a suitable time, particularly in orchards with sprinkler irrigation. Warm-season cover crops, if desired, should be restricted to alleys to reduce possible competition with pecan. Alleys provide better illumination than do tree rows during periods when pecan trees are in leaf, and the tillage mentioned above will encourage emergence of warm-season cover crops. If these die or are killed in late summer or early fall, timing of N release may not be optimal, in the absence of adequate irrigation. Many options and tradeoffs need to be explored before choosing a cover-crop system. Attimes, several objectives may appear to conflict, and even delicately-managed mixtures of species may not fulfill all the desired functions.


Crop Protection | 1995

Soilborne pathogens in a vegetable double-crop with conservation tillage following winter cover crops

Donald R. Sumner; Sharad C. Phatak; Richard B. Chalfant; Kathryn E. Brunson; Robert L. Bugg

Abstract A cucumber-cucumber double-crop followed by a cucumber-snap bean double-crop was grown in a system using conservation tillage in relay-cropping following winter cover crops. Twenty different winter covers were legumes, grasses, legume-grass mixtures, crucifers, or fallow (no cover, resident vegetation). Population densities of Pythium spp. (primarily P. irregulare ) and Rhizoctonia solani anastomosis group (AG-4) were greater following legumes than following grasses or fallow; legume-grass mixtures and crucifers were intermediate. Cucumber fruit rot (induced primarily by R. solani AG-4) was more severe following legumes and crucifers than following grasses; legume-grass mixtures were intermediate. In the snap bean crop following cucumber, root and hypocotyl diseases were more severe following winter covers of legumes or fallow than following grass or legume-grass mixtures; crucifers were intermediate. Root-knot nematodes ( Meloidogyne incognita ) caused injury to the second vegetable crop each year in all winter cover rotations.


Journal of Entomological Science | 1990

Tarnished plant bug (Hemiptera: Miridae) on selected cool-season leguminous cover crops.

Robert L. Bugg; Felix L. Wäckers; Kathryn E. Brunson; Sharad C. Phatak; James D. Dutcher

Replicated field trials indicated that tarnished plant bug (TPB), Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae) attained relatively-high densities on hybrid vetches, Vicia sativa L. X V. cordata Wulf cv ‘Cahaba White’ and ‘Vantage’, lower densities on crimson clover, Trifolium incarnatum L. cv ‘Dixie,’ and particularly-low densities on subterranean clover, Trifolium subterraneum L. cv ‘Mt. Barker’. Densities of TPB were also relatively low on an additional 10 types of subterranean clover, including 7 cultivars representing T. subterraneum, 1 cultivar of T. brachycalycinum Katznelson and Morley, and 3 of T. yanninicum Katznelson and Morley. Field longevity trials indicated that late-instar and adult TPB lived longer when caged on crimson clover than on hybrid vetch, which in turn supported better survival than did subterranean clover. When adult TPB were caged on hybrid vetch or subterranean clover with or without floral and fruiting structures, there was no evidence that the presence of thes...

Collaboration


Dive into the Sharad C. Phatak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Casimir A. Jaworski

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge