Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharada Labadie is active.

Publication


Featured researches published by Sharada Labadie.


Bioorganic & Medicinal Chemistry Letters | 2013

Identification of substituted 2-thio-6-oxo-1,6-dihydropyrimidines as inhibitors of human lactate dehydrogenase.

Peter S. Dragovich; Benjamin P. Fauber; Laura Corson; Charles Z. Ding; Charles Eigenbrot; HongXiu Ge; Anthony M. Giannetti; Thomas Hunsaker; Sharada Labadie; Yichin Liu; Shiva Malek; Borlan Pan; David Peterson; Keith Pitts; Hans E. Purkey; Steve Sideris; Mark Ultsch; Erica VanderPorten; Binqing Wei; Qing Xu; Ivana Yen; Qin Yue; Huihui Zhang; Xuying Zhang

A novel 2-thio-6-oxo-1,6-dihydropyrimidine-containing inhibitor of human lactate dehydrogenase (LDH) was identified by high-throughput screening (IC50=8.1 μM). Biochemical, surface plasmon resonance, and saturation transfer difference NMR experiments indicated that the compound specifically associated with human LDHA in a manner that required simultaneous binding of the NADH co-factor. Structural variation of the screening hit resulted in significant improvements in LDHA biochemical inhibition activity (best IC50=0.48 μM). A crystal structure of an optimized compound bound to human LDHA was obtained and explained many of the observed structure-activity relationships.


Journal of Medicinal Chemistry | 2012

Discovery and Optimization of C-2 Methyl Imidazopyrrolopyridines as Potent and Orally Bioavailable JAK1 Inhibitors with Selectivity over JAK2.

Mark Zak; Rohan Mendonca; Mercedesz Balazs; Kathy Barrett; Philippe Bergeron; Wade S. Blair; Christine Chang; Gauri Deshmukh; Jason DeVoss; Peter S. Dragovich; Charles Eigenbrot; Nico Ghilardi; Paul Gibbons; Stefan Gradl; Chris Hamman; Emily Hanan; Eric Harstad; Peter R. Hewitt; Christopher Hurley; T Jin; Amber E. Johnson; Tony Johnson; Jane R. Kenny; Michael F. T. Koehler; P Bir Kohli; Janusz Jozef Kulagowski; Sharada Labadie; J Liao; Marya Liimatta; Zeming Lin

Herein we report the discovery of the C-2 methyl substituted imidazopyrrolopyridine series and its optimization to provide potent and orally bioavailable JAK1 inhibitors with selectivity over JAK2. The C-2 methyl substituted inhibitor 4 exhibited not only improved JAK1 potency relative to unsubstituted compound 3 but also notable JAK1 vs JAK2 selectivity (20-fold and >33-fold in biochemical and cell-based assays, respectively). Features of the X-ray structures of 4 in complex with both JAK1 and JAK2 are delineated. Efforts to improve the in vitro and in vivo ADME properties of 4 while maintaining JAK1 selectivity are described, culminating in the discovery of a highly optimized and balanced inhibitor (20). Details of the biological characterization of 20 are disclosed including JAK1 vs JAK2 selectivity levels, preclinical in vivo PK profiles, performance in an in vivo JAK1-mediated PK/PD model, and attributes of an X-ray structure in complex with JAK1.


Bioorganic & Medicinal Chemistry Letters | 2013

Identification of 2-amino-5-aryl-pyrazines as inhibitors of human lactate dehydrogenase.

Benjamin P. Fauber; Peter S. Dragovich; Jinhua Chen; Laura Corson; Charles Z. Ding; Charles Eigenbrot; Anthony M. Giannetti; Thomas Hunsaker; Sharada Labadie; Yichin Liu; Shiva Malek; David Peterson; Keith Pitts; Steven Sideris; Mark Ultsch; Erica VanderPorten; J Wang; Binqing Wei; Ivana Yen; Qin Yue

A 2-amino-5-aryl-pyrazine was identified as an inhibitor of human lactate dehydrogenase A (LDHA) via a biochemical screening campaign. Biochemical and biophysical experiments demonstrated that the compound specifically interacted with human LDHA. Structural variation of the screening hit resulted in improvements in LDHA biochemical inhibition and pharmacokinetic properties. A crystal structure of an improved compound bound to human LDHA was also obtained and it explained many of the observed structure-activity relationships.


Nature Chemical Biology | 2016

Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition

Aaron Boudreau; Hans E. Purkey; Anna Hitz; Kirk Robarge; David Peterson; Sharada Labadie; Mandy Kwong; Rebecca Hong; Min Gao; Christopher Del Nagro; Raju V. Pusapati; Shuguang Ma; Laurent Salphati; Jodie Pang; Aihe Zhou; Tommy Lai; Yingjie Li; Zhongguo Chen; Binqing Wei; Ivana Yen; Steve Sideris; Mark L. McCleland; Ron Firestein; Laura Corson; Alex Vanderbilt; Simon Williams; Anneleen Daemen; Marcia Belvin; Charles Eigenbrot; Peter K. Jackson

Metabolic reprogramming in tumors represents a potential therapeutic target. Herein we used shRNA depletion and a novel lactate dehydrogenase (LDHA) inhibitor, GNE-140, to probe the role of LDHA in tumor growth in vitro and in vivo. In MIA PaCa-2 human pancreatic cells, LDHA inhibition rapidly affected global metabolism, although cell death only occurred after 2 d of continuous LDHA inhibition. Pancreatic cell lines that utilize oxidative phosphorylation (OXPHOS) rather than glycolysis were inherently resistant to GNE-140, but could be resensitized to GNE-140 with the OXPHOS inhibitor phenformin. Acquired resistance to GNE-140 was driven by activation of the AMPK-mTOR-S6K signaling pathway, which led to increased OXPHOS, and inhibitors targeting this pathway could prevent resistance. Thus, combining an LDHA inhibitor with compounds targeting the mitochondrial or AMPK-S6K signaling axis may not only broaden the clinical utility of LDHA inhibitors beyond glycolytically dependent tumors but also reduce the emergence of resistance to LDHA inhibition.


Bioorganic & Medicinal Chemistry Letters | 2014

Identification of substituted 3-hydroxy-2-mercaptocyclohex-2-enones as potent inhibitors of human lactate dehydrogenase.

Peter S. Dragovich; Benjamin P. Fauber; Jason Boggs; Jinhua Chen; Laura Corson; Charles Z. Ding; Charles Eigenbrot; HongXiu Ge; Anthony M. Giannetti; Thomas Hunsaker; Sharada Labadie; C Li; Yichin Liu; Shuguang Ma; Shiva Malek; David Peterson; Keith Pitts; Hans E. Purkey; Kirk Robarge; Laurent Salphati; Steven Sideris; Mark Ultsch; Erica VanderPorten; J Wang; Binqing Wei; Qing Xu; Ivana Yen; Qin Yue; Huihui Zhang; Xuying Zhang

A novel class of 3-hydroxy-2-mercaptocyclohex-2-enone-containing inhibitors of human lactate dehydrogenase (LDH) was identified through a high-throughput screening approach. Biochemical and surface plasmon resonance experiments performed with a screening hit (LDHA IC50=1.7 μM) indicated that the compound specifically associated with human LDHA in a manner that required simultaneous binding of the NADH co-factor. Structural variation of this screening hit resulted in significant improvements in LDHA biochemical inhibition activity (best IC50=0.18 μM). Two crystal structures of optimized compounds bound to human LDHA were obtained and explained many of the observed structure-activity relationships. In addition, an optimized inhibitor exhibited good pharmacokinetic properties after oral administration to rats (F=45%).


Bioorganic & Medicinal Chemistry Letters | 2016

Lead optimization of a pyrazolo[1,5-a]pyrimidin-7(4H)-one scaffold to identify potent, selective and orally bioavailable KDM5 inhibitors suitable for in vivo biological studies.

Jun Liang; Birong Zhang; Sharada Labadie; Daniel F. Ortwine; Maia Vinogradova; James R. Kiefer; Victor S. Gehling; Jean-Christophe Harmange; Richard D. Cummings; Tommy Lai; Jiangpeng Liao; Xiaoping Zheng; Yichin Liu; Amy Gustafson; Erica Van der Porten; Weifeng Mao; Bianca M. Liederer; Gauri Deshmukh; Marie Classon; Patrick Trojer; Peter S. Dragovich; Lesley J. Murray

Starting with a lead [1,5-a]pyrimidin-7(4H)-one-containing molecule (1), we generated potent, selective and orally bioavailable KDM5 inhibitors. Using structure- and property-based approaches, we designed 48 with improved cell potency (PC9 H3K4Me3 EC50=0.34μM). Furthermore, 48 maintained suitable physiochemical properties and displayed an excellent pharmacokinetic (PK) profile in mice. When dosed orally in mice at 50mg/kg twice a day (BID), 48 showed an unbound maximal plasma concentration (Cmax) >15-fold over its cell EC50, thereby providing a robust chemical probe for studying KDM5 biological functions in vivo.


Bioorganic & Medicinal Chemistry Letters | 2012

Structure-based discovery of C-2 substituted imidazo-pyrrolopyridine JAK1 inhibitors with improved selectivity over JAK2.

Sharada Labadie; Peter S. Dragovich; Kathy Barrett; Wade S. Blair; Philippe Bergeron; Christine Chang; Gauri Deshmukh; Charles Eigenbrot; Nico Ghilardi; Paul Gibbons; Christopher Hurley; Adam R. Johnson; Jane R. Kenny; Pawan Bir Kohli; Janusz Jozef Kulagowski; Marya Liimatta; Patrick Lupardus; Rohan Mendonca; Jeremy Murray; Rebecca Pulk; Steven Shia; Micah Steffek; Savita Ubhayakar; Mark Ultsch; Anne van Abbema; Stuart Ward; Mark Zak

Herein we describe our successful efforts in obtaining C-2 substituted imidazo-pyrrolopyridines with improved JAK1 selectivity relative to JAK2 by targeting an amino acid residue that differs between the two isoforms (JAK1: E966; JAK2: D939). Efforts to improve cellular potency by reducing the polarity of the inhibitors are also detailed. The X-ray crystal structure of a representative inhibitor in complex with the JAK1 enzyme is also disclosed.


Bioorganic & Medicinal Chemistry Letters | 2013

Design and evaluation of novel 8-oxo-pyridopyrimidine Jak1/2 inhibitors

Sharada Labadie; Kathy Barrett; Wade S. Blair; Christine Chang; Gauri Deshmukh; Charles Eigenbrot; Paul Gibbons; Adam R. Johnson; Jane R. Kenny; Pawan Bir Kohli; Marya Liimatta; Patrick Lupardus; Steven Shia; Micah Steffek; Savita Ubhayakar; Anne van Abbema; Mark Zak

A highly ligand efficient, novel 8-oxo-pyridopyrimidine containing inhibitor of Jak1 and Jak2 isoforms with a pyridone moiety as the hinge-binding motif was discovered. Structure-based design strategies were applied to significantly improve enzyme potency and the polarity of the molecule was adjusted to gain cellular activity. The crystal structures of two representative inhibitors bound to Jak1 were obtained to enable SAR exploration.


Bioorganic & Medicinal Chemistry Letters | 2016

Design and evaluation of 1,7-naphthyridones as novel KDM5 inhibitors

Sharada Labadie; Peter S. Dragovich; Richard T. Cummings; Gauri Deshmukh; Amy Gustafson; Ning Han; Jean-Christophe Harmange; James R. Kiefer; Yue Li; Jun Liang; Bianca M. Liederer; Yichin Liu; Wanda Manieri; Wiefeng Mao; Lesley J. Murray; Daniel F. Ortwine; Patrick Trojer; Erica VanderPorten; Maia Vinogradova; Li Wen

Features from a high throughput screening (HTS) hit and a previously reported scaffold were combined to generate 1,7-naphthyridones as novel KDM5 enzyme inhibitors with nanomolar potencies. These molecules exhibited high selectivity over the related KDM4C and KDM2B isoforms. An X-ray co-crystal structure of a representative molecule bound to KDM5A showed that these inhibitors are competitive with the co-substrate (2-oxoglutarate or 2-OG).


Bioorganic & Medicinal Chemistry Letters | 2017

From a novel HTS hit to potent, selective, and orally bioavailable KDM5 inhibitors.

Jun Liang; Sharada Labadie; Birong Zhang; Daniel F. Ortwine; Snahel Patel; Maia Vinogradova; James R. Kiefer; Till Mauer; Victor S. Gehling; Jean-Christophe Harmange; Richard D. Cummings; Tommy Lai; Jiangpeng Liao; Xiaoping Zheng; Yichin Liu; Amy Gustafson; Erica Van der Porten; Weifeng Mao; Bianca M. Liederer; Gauri Deshmukh; Le An; Yingqing Ran; Marie Classon; Patrick Trojer; Peter S. Dragovich; Lesley J. Murray

A high-throughput screening (HTS) of the Genentech/Roche library identified a novel, uncharged scaffold as a KDM5A inhibitor. Lacking insight into the binding mode, initial attempts to improve inhibitor potency failed to improve potency, and synthesis of analogs was further hampered by the presence of a C-C bond between the pyrrolidine and pyridine. Replacing this with a C-N bond significantly simplified synthesis, yielding pyrazole analog 35, of which we obtained a co-crystal structure with KDM5A. Using structure-based design approach, we identified 50 with improved biochemical, cell potency and reduced MW and lower lipophilicity (LogD) compared with the original hit. Furthermore, 50 showed lower clearance than 9 in mice. In combination with its remarkably low plasma protein binding (PPB) in mice (40%), oral dosing of 50 at 5mg/kg resulted in unbound Cmax ∼2-fold of its cell potency (PC9 H3K4Me3 0.96μM), meeting our criteria for an in vivo tool compound from a new scaffold.

Collaboration


Dive into the Sharada Labadie's collaboration.

Researchain Logo
Decentralizing Knowledge