Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharan Ramaswamy is active.

Publication


Featured researches published by Sharan Ramaswamy.


ACS Applied Materials & Interfaces | 2012

Graphene nanoplatelet-induced strengthening of ultrahigh molecular weight polyethylene and biocompatibility in vitro.

Debrupa Lahiri; Rupak Dua; Cheng Zhang; Ignacio de Socarraz-Novoa; Ashwin Bhat; Sharan Ramaswamy; Arvind Agarwal

Graphene nanoplatelets (GNPs) are added as reinforcement to ultrahigh molecular weight polyethylene (UHMWPE) with an intended application for orthopedic implants. Electrostatic spraying is established as a potential fabrication method for synthesizing large-scale UHMWPE-GNP composite films. At a low concentration of 0.1 wt % GNP, the composite film shows highest improvement in fracture toughness (54%) and tensile strength (71%) as compared to UHMWPE. Increased GNP content of 1 wt % leads to improvement in elastic modulus and yield strength but fracture toughness and tensile strength are reduced significantly at higher GNP content. The strengthening mechanisms of the UHMWPE-GNP system are highly influenced by the GNP concentration, which dictates its degree of dispersion and extent of polymer wrapping. The fraction of GNPs oriented along the tensile axis influences the elastic deformation, whereas the wrapping of polymer and GNP-polymer interfacial strength determines the deformation behavior in the plastic regime. The cytotoxicity of GNP to osteoblast is dependent on its concentration and is also influenced by agglomeration of particles. Lowering the concentration of GNPs in UHMWPE improves the biocompatibility of the composite surface to bone cells. The survivability of osteoblasts deteriorates up to 86% on 1 wt % GNP containing surface, whereas much smaller (6-16%) reduction is observed for 0.1 wt % GNP over 5 days of incubation.


Biomaterials | 2010

THE ROLE OF ORGAN LEVEL CONDITIONING ON THE PROMOTION OF ENGINEERED HEART VALVE TISSUE DEVELOPMENT IN-VITRO USING MESENCHYMAL STEM CELLS

Sharan Ramaswamy; Danielle Gottlieb; George C. Engelmayr; Elena Aikawa; David E. Schmidt; Diana M. Gaitan-Leon; Virna L. Sales; John E. Mayer; Michael S. Sacks

We have previously shown that combined flexure and flow (CFF) augment engineered heart valve tissue formation using bone marrow-derived mesenchymal stem cells (MSC) seeded on polyglycolic acid (PGA)/poly-L-lactic acid (PLLA) blend nonwoven fibrous scaffolds (Engelmayr, et al., Biomaterials 2006; vol. 27 pp. 6083-95). In the present study, we sought to determine if these phenomena were reproducible at the organ level in a functional tri-leaflet valve. Tissue engineered valve constructs (TEVC) were fabricated using PGA/PLLA nonwoven fibrous scaffolds then seeded with MSCs. Tissue formation rates using both standard and augmented (using basic fibroblast growth factor [bFGF] and ascorbic acid-2-phosphate [AA2P]) media to enhance the overall production of collagen were evaluated, along with their relation to the local fluid flow fields. The resulting TEVCs were statically cultured for 3 weeks, followed by a 3 week dynamic culture period using our organ level bioreactor (Hildebrand et al., ABME, Vol. 32, pp. 1039-49, 2004) under approximated pulmonary artery conditions. Results indicated that supplemented media accelerated collagen formation (approximately 185% increase in collagen mass/MSC compared to standard media), as well as increasing collagen mass production from 3.90 to 4.43 pg/cell/week from 3 to 6 weeks. Using augmented media, dynamic conditioning increased collagen mass production rate from 7.23 to 13.65 pg/cell/week (88.8%) during the dynamic culture period, along with greater preservation of net DNA. Moreover, when compared to our previous CFF study, organ level conditioning increased the collagen production rate from 4.76 to 6.42 pg/cell/week (35%). Newly conducted CFD studies of the CFF specimen flow patterns suggested that oscillatory surface shear stresses were surprisingly similar to a tri-leaflet valve. Overall, we found that the use of simulated pulmonary artery conditions resulted in substantially larger collagen mass production levels and rates found in our earlier CFF study. Moreover, given the fact that the scaffolds underwent modest strains (approximately 7% max) during either CFF or physiological conditioning, the oscillatory surface shear stresses estimated in both studies may play a substantial role in eliciting MSC collagen production in the highly dynamic engineered heart valve fluid mechanical environment.


Tissue Engineering Part C-methods | 2008

Noninvasive Assessment of Glycosaminoglycan Production in Injectable Tissue-Engineered Cartilage Constructs Using Magnetic Resonance Imaging

Sharan Ramaswamy; Mehmet C. Uluer; Stephanie Leen; Preeti Bajaj; Kenneth W. Fishbein; Richard G. Spencer

The glycosaminoglycan (GAG) content of engineered cartilage is a determinant of biochemical and mechanical quality. The ability to measure the degree to which GAG content is maintained or increases in an implant is therefore of importance in cartilage repair procedures. The gadolinium exclusion magnetic resonance imaging (MRI) method for estimating matrix fixed charge density (FCD) is ideally suited to this. One promising approach to cartilage repair is use of seeded injectable hydrogels. Accordingly, we assess the reliability of measuring GAG content in such a system ex vivo using MRI. Samples of the photopolymerizable hydrogel, poly(ethylene oxide) diacrylate, were seeded with bovine chondrocytes (approximately 2.4 million cells/sample). The FCD of the constructs was determined using MRI after 9, 16, 29, 36, 43, and 50 days of incubation. Values were correlated with the results of biochemical determination of GAG from the same samples. FCD and GAG were found to be statistically significantly correlated (R2 = 0.91, p < 0.01). We conclude that MRI-derived FCD measurements of FCD in injectable hydrogels reflect tissue GAG content and that this methodology therefore has potential for in vivo monitoring of such constructs.


NMR in Biomedicine | 2012

Superparamagnetic iron oxide (SPIO) labeling efficiency and subsequent MRI tracking of native cell populations pertinent to pulmonary heart valve tissue engineering studies

Sharan Ramaswamy; Paul A. Schornack; Adam G. Smelko; Steven M. Boronyak; Julia Ivanova; John E. Mayer; Michael S. Sacks

The intimal and medial linings of the pulmonary artery consist largely of vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs), respectively. The migration of these cell types to a potential tissue‐engineered pulmonary valve (TEPV) implant process is therefore of interest in understanding the valve remodeling process. Visualization and cell tracking by MRI, which employs hypointense contrast achievable through the use of superparamagnetic iron oxide (SPIO) microparticles to label cells, provides a method in which this can be studied. We investigated the SPIO labeling efficiency of human VECs and VSMCs, and used two‐ and three‐dimensional gradient echo sequences to track the migration of these cells in agar gel constructs. Protamine sulfate (4.5 µg/mL) was used to enhance SPIO uptake and was found to have no influence on cell viability or proliferation. MRI experiments were initially performed using a 9.4‐T scanner. The results demonstrated that the spatial positions of hypointense spots were relatively unchanged over 12 days. Subsequent MR experiments performed at 7 T demonstrated that three‐dimensional imaging provided the best spatial resolution to assess cell fate. R2* maps were bright in SPIO cell‐encapsulated gels in comparison with unlabeled counterparts. Signal voids were ruled out as hypointense regions owing to the smooth exponential decay of T2* in these voxels. As a next step, we intend to use the SPIO cell labeling and MR protocols established in this study to assess whether hemodynamic stresses will alter the vascular cell migratory patterns. These studies will shed light on the mechanisms of vascular remodeling after TEPV implantation. Copyright


Journal of Biomechanical Engineering-transactions of The Asme | 2006

Comparison of Left Anterior Descending Coronary Artery Hemodynamics Before and After Angioplasty

Sharan Ramaswamy; Sarah C. Vigmostad; A. Wahle; Y.-G. Lai; M. E. Olszewski; K. C. Braddy; T. M. H. Brennan; J. D. Rossen; M. Sonka; K. B. Chandran

Coronary artery disease (CAD) is characterized by the progression of atherosclerosis, a complex pathological process involving the initiation, deposition, development, and breakdown of the plaque. The blood flow mechanics in arteries play a critical role in the targeted locations and progression of atherosclerotic plaque. In coronary arteries with motion during the cardiac contraction and relaxation, the hemodynamic flow field is substantially different from the other arterial sites with predilection of atherosclerosis. In this study, our efforts focused on the effects of arterial motion and local geometry on the hemodynamics of a left anterior descending (LAD) coronary artery before and after clinical intervention to treat the disease. Three-dimensional (3D) arterial segments were reconstructed at 10 phases of the cardiac cycle for both pre- and postintervention based on the fusion of intravascular ultrasound (IVUS) and biplane angiographic images. An arbitrary Lagrangian-Eulerian formulation was used for the computational fluid dynamic analysis. The measured arterial translation was observed to be larger during systole after intervention and more out-of-plane motion was observed before intervention, indicating substantial alterations in the cardiac contraction after angioplasty. The time averaged axial wall shear stress ranged from -0.2 to 9.5 Pa before intervention compared to -0.02 to 3.53 Pa after intervention. Substantial oscillatory shear stress was present in the preintervention flow dynamics compared to that in the postintervention case.


Journal of Biomedical Materials Research Part B | 2014

Augmentation of engineered cartilage to bone integration using hydroxyapatite

Rupak Dua; Jerry Centeno; Sharan Ramaswamy

Articular cartilage injuries occur frequently in the knee joint. Photopolymerizable cartilage tissue engineering approaches appear promising; however, fundamentally, forming a stable interface between the subchondral bone and tissue engineered cartilage components remains a major challenge. We investigated the utility of hydroxyapatite (HA) nanoparticles to promote controlled bone-growth across the bone-cartilage interface in an in vitro engineered tissue model system using bone marrow derived stem cells. Samples incorporated with HA demonstrated significantly higher interfacial shear strength (at the junction between engineered cartilage and engineered bone) compared with the constructs without HA (p < 0.05), after 28 days of culture. Interestingly, this increased interfacial shear strength due to the presence of HA was observed as early as 7 days and appeared to have sustained itself for an additional three weeks without interacting with strength increases attributable to subsequent secretion of engineered tissue matrix. Histological evidence showed that there was ∼7.5% bone in-growth into the cartilage region from the bone side. The mechanism of enhanced engineered cartilage to bone integration with HA incorporation appeared to be facilitated by the deposition of calcium phosphate in the transition zone. These findings indicate that controlled bone in-growth using HA incorporation permits more stable anchorage of the injectable hydrogel-based engineered cartilage construct via augmented integration between bone and cartilage.


PLOS ONE | 2015

Differentiation and Distribution of Marrow Stem Cells in Flex-Flow Environments Demonstrate Support of the Valvular Phenotype

Sasmita Rath; Manuel Salinas; Ana Villegas; Sharan Ramaswamy

For treatment of critical heart valve diseases, prosthetic valves perform fairly well in most adults; however, for pediatric patients, there is the added requirement that the replacement valve grows with the child, thus extremely limiting current treatment options. Tissue engineered heart valves (TEHV), such as those derived from autologous bone marrow stem cells (BMSCs), have the potential to recapitulate native valve architecture and accommodate somatic growth. However, a fundamental pre-cursor in promoting directed integration with native tissues rather than random, uncontrolled growth requires an understanding of BMSC mechanobiological responses to valve-relevant mechanical environments. Here, we report on the responses of human BMSC-seeded polymer constructs to the valve-relevant stress states of: (i) steady flow alone, (ii) cyclic flexure alone, and (iii) the combination of cyclic flexure and steady flow (flex-flow). BMSCs were seeded onto a PGA: PLLA polymer scaffold and cultured in static culture for 8 days. Subsequently, the aforementioned mechanical conditions, (groups consisting of steady flow alone—850ml/min, cyclic flexure alone—1 Hz, and flex-flow—850ml/min and 1 Hz) were applied for an additional two weeks. We found samples from the flex-flow group exhibited a valve-like distribution of cells that expressed endothelial (preference to the surfaces) and myofibroblast (preference to the intermediate region) phenotypes. We interpret that this was likely due to the presence of both appreciable fluid-induced shear stress magnitudes and oscillatory shear stresses, which were concomitantly imparted onto the samples. These results indicate that flex-flow mechanical environments support directed in vitro differentiation of BMSCs uniquely towards a heart valve phenotype, as evident by cellular distribution and expression of specific gene markers. A priori guidance of BMSC-derived, engineered tissue growth under flex-flow conditions may serve to subsequently promote controlled, engineered to native tissue integration processes in vivo necessary for successful long-term valve remodeling.


Acta Biomaterialia | 2013

Glycosaminoglycan entrapment by fibrin in engineered heart valve tissues

Abraham Alfonso; Sasmita Rath; Parvin Rafiee; Mario Hernandez-Espino; Mahreen Din; Florence George; Sharan Ramaswamy

Tissue engineered heart valves (TEHVs) may provide a permanent solution to congenital heart valve disease by permitting somatic valve growth in the pediatric patient. However, to date, TEHV studies have focused primarily on collagen, the dominant component of valve extracellular matrix (ECM). Temporal decreases in other ECM components, such as the glycosaminoglycans (GAGs), generally decrease as cells produce more collagen under mechanically loaded states; nevertheless, GAGs represent a key component of the valve ECM, providing structural stability and hydration to the leaflets. In an effort to retain GAGs within the engineered constructs, here we investigated the utility of the protein fibrin in combination with a valve-like, cyclic flexure and steady flow (flex-flow) mechanical conditioning culture process using adult human periodontal ligament cells (PLCs). We found both fibrin and flex-flow mechanical components to be independently significant (p<0.05), and hence important in influencing the DNA, GAG and collagen contents of the engineered tissues. In addition, the interaction of fibrin with flex-flow was found to be significant in the case of collagen; specifically, the combination of these environments promoted PLC collagen production resulting in a significant difference compared to dynamic and statically cultured specimens without fibrin. Histological examination revealed that the GAGs were retained by fibrin entrapment and adhesion, which were subsequently confirmed by additional experiments on native valve tissues. We conclude that fibrin in the flex-flow culture of engineered heart valve tissues: (i) augments PLC-derived collagen production; and (ii) enhances retention of GAGs within the developing ECM.


Journal of Biomechanics | 2014

Computational simulations predict a key role for oscillatory fluid shear stress in de novo valvular tissue formation

Manuel Salinas; Sharan Ramaswamy

Previous efforts in heart valve tissue engineering demonstrated that the combined effect of cyclic flexure and steady flow on bone marrow derived stem cell-seeded scaffolds resulted in significant increases in engineered collagen formation [Engelmayr et al. Cyclic flexure and laminar flow synergistically accelerate mesenchymal stem cell-mediated engineered tissue formation: Implications for engineered heart valve tissues. Biomaterials 2006; 27(36): 6083-95]. Here, we provide a new interpretation for the underlying reason for this observed effect. In addition, another related investigation demonstrated the impact of fluid flow on DNA content and quantified the fluid-induced shear stresses on the engineered heart valve tissue specimens [Engelmayr et al. A Novel Flex-Stretch-Flow Bioreactor for the Study of Engineered Heart Valve Tissue Mechanobiology]. Annals of Biomedical Engineering 2008, 36, 1-13]. In this study, we performed more advanced CFD analysis with an emphasis on oscillatory wall shear stresses imparted on specimens when mechanically conditioned by a combination of cyclic flexure and steady flow. Specifically, we hypothesized that the dominant stimulatory regulator of the bone marrow stem cells is fluid-induced and depends on both the magnitude and temporal directionality of surface stresses, i.e., oscillatory shear stresses (OSS) acting on the developing tissues. Therefore, we computationally quantified the (i) magnitude of fluid-induced shear stresses as well as (ii) the extent of temporal fluid oscillations in the flow field using the oscillatory shear index (OSI) parameter. Noting that sample cyclic flexure induces a high degree of OSS, we incorporated moving boundary computational fluid dynamic simulations of samples housed within a bioreactor to consider the effects of: (1) No Flow, No Flexure (control group), (2) Steady Flow-alone, (3) Cyclic Flexure-alone and (4) Combined Steady flow and Cyclic Flexure environments. Indeed we found that the coexistence of both OSS and appreciable shear stress magnitudes explained the high levels of engineered collagen previously observed from combining cyclic flexure and steady flow states. On the other hand, each of these metrics on its own showed no association. This finding suggests that cyclic flexure and steady flow synergistically promote engineered heart valve tissue production via OSS, so long as the oscillations are accompanied by a critical magnitude of shear stress.


Computer Methods in Biomechanics and Biomedical Engineering | 2014

Oscillatory shear stress created by fluid pulsatility versus flexed specimen configurations

Manuel Salinas; David E. Schmidt; Miguel Libera; Richard R. Lange; Sharan Ramaswamy

Oscillatory shear stress (OSS), caused by time-varying flow environments, may play a critical role in the production of engineered tissue by bone marrow-derived stem cells. This is particularly relevant in heart valve tissue engineering (HVTE), owing to the intense haemodynamic environments that surround native valves. In this study, we examined and quantified the role that (i) physiologically relevant scales of pulsatility and (ii) changes in geometry as a function of specimen flexure have in creating OSS conditions. A U-shaped bioreactor capable of producing flow, stretch and flexure was modelled with housed specimens, and computational fluid dynamic simulations were performed. We found that physiologically relevant OSS can be maximised by the application of pulsatile flow to straight, non-moving specimens in a uniform manner. This finding reduces a substantial layer of complexity in dynamic HVTE protocols in which traditionally, time-varying flow has been promoted through specimen movement in custom-made bioreactors.

Collaboration


Dive into the Sharan Ramaswamy's collaboration.

Top Co-Authors

Avatar

Manuel Salinas

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Rupak Dua

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael S. Sacks

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Sasmita Rath

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Miguel Libera

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Norman Munroe

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Arvind Agarwal

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Kenneth W. Fishbein

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Richard G. Spencer

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge