Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharareh Gholamin is active.

Publication


Featured researches published by Sharareh Gholamin.


Clinical Cancer Research | 2014

BET Bromodomain Inhibition of MYC-Amplified Medulloblastoma

Pratiti Bandopadhayay; Guillaume Bergthold; Brian Nguyen; Simone Schubert; Sharareh Gholamin; Yujie Tang; Sara Bolin; Steven E. Schumacher; Rhamy Zeid; Sabran Masoud; Furong Yu; Nujsaubnusi Vue; William J. Gibson; Brenton R. Paolella; Siddhartha Mitra; Samuel H. Cheshier; Jun Qi; Kun-Wei Liu; Robert J. Wechsler-Reya; William A. Weiss; Fredrik J. Swartling; Mark W. Kieran; James E. Bradner; Rameen Beroukhim; Yoon-Jae Cho

Purpose: MYC-amplified medulloblastomas are highly lethal tumors. Bromodomain and extraterminal (BET) bromodomain inhibition has recently been shown to suppress MYC-associated transcriptional activity in other cancers. The compound JQ1 inhibits BET bromodomain-containing proteins, including BRD4. Here, we investigate BET bromodomain targeting for the treatment of MYC-amplified medulloblastoma. Experimental Design: We evaluated the effects of genetic and pharmacologic inhibition of BET bromodomains on proliferation, cell cycle, and apoptosis in established and newly generated patient- and genetically engineered mouse model (GEMM)-derived medulloblastoma cell lines and xenografts that harbored amplifications of MYC or MYCN. We also assessed the effect of JQ1 on MYC expression and global MYC-associated transcriptional activity. We assessed the in vivo efficacy of JQ1 in orthotopic xenografts established in immunocompromised mice. Results: Treatment of MYC-amplified medulloblastoma cells with JQ1 decreased cell viability associated with arrest at G1 and apoptosis. We observed downregulation of MYC expression and confirmed the inhibition of MYC-associated transcriptional targets. The exogenous expression of MYC from a retroviral promoter reduced the effect of JQ1 on cell viability, suggesting that attenuated levels of MYC contribute to the functional effects of JQ1. JQ1 significantly prolonged the survival of orthotopic xenograft models of MYC-amplified medulloblastoma (P < 0.001). Xenografts harvested from mice after five doses of JQ1 had reduced the expression of MYC mRNA and a reduced proliferative index. Conclusion: JQ1 suppresses MYC expression and MYC-associated transcriptional activity in medulloblastomas, resulting in an overall decrease in medulloblastoma cell viability. These preclinical findings highlight the promise of BET bromodomain inhibitors as novel agents for MYC-amplified medulloblastoma. Clin Cancer Res; 20(4); 912–25. ©2013 AACR.


Nature Medicine | 2014

Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition

Yujie Tang; Sharareh Gholamin; Simone Schubert; Minde Willardson; Alex G. Lee; Pratiti Bandopadhayay; Guillame Bergthold; Sabran Masoud; Brian Nguyen; Nujsaubnusi Vue; Brianna Balansay; Furong Yu; Sekyung Oh; Pamelyn Woo; Spenser Chen; Anitha Ponnuswami; Michelle Monje; Scott X. Atwood; Ramon J. Whitson; Siddhartha Mitra; Samuel H. Cheshier; Jun Qi; Rameen Beroukhim; Jean Y. Tang; Rob Wechsler-Reya; Anthony E. Oro; Brian A. Link; James E. Bradner; Yoon-Jae Cho

Hedgehog signaling drives oncogenesis in several cancers, and strategies targeting this pathway have been developed, most notably through inhibition of Smoothened (SMO). However, resistance to Smoothened inhibitors occurs by genetic changes of Smoothened or other downstream Hedgehog components. Here we overcome these resistance mechanisms by modulating GLI transcription through inhibition of bromo and extra C-terminal (BET) bromodomain proteins. We show that BRD4 and other BET bromodomain proteins regulate GLI transcription downstream of SMO and suppressor of fused (SUFU), and chromatin immunoprecipitation studies reveal that BRD4 directly occupies GLI1 and GLI2 promoters, with a substantial decrease in engagement of these sites after treatment with JQ1, a small-molecule inhibitor targeting BRD4. Globally, genes associated with medulloblastoma-specific GLI1 binding sites are downregulated in response to JQ1 treatment, supporting direct regulation of GLI activity by BRD4. Notably, patient- and GEMM (genetically engineered mouse model)-derived Hedgehog-driven tumors (basal cell carcinoma, medulloblastoma and atypical teratoid rhabdoid tumor) respond to JQ1 even when harboring genetic lesions rendering them resistant to Smoothened antagonists. Altogether, our results reveal BET proteins as critical regulators of Hedgehog pathway transcriptional output and nominate BET bromodomain inhibitors as a strategy for treating Hedgehog-driven tumors with emerged or a priori resistance to Smoothened antagonists.


European Journal of Cancer | 2016

MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma

Hamed Mirzaei; Sharareh Gholamin; Soodabeh Shahidsales; Amirhossein Sahebkar; Mahmoud Reza Jaafari; Hamid Reza Mirzaei; Seyed Mahdi Hassanian; Amir Avan

Melanoma is a life-threatening malignancy with poor prognosis and a relatively high burden of mortality in advanced stages. The efficacy of current available therapeutic strategies is limited, with a survival rate of less than 10%. Despite rapid advances in biomarker-guided drug development in different tumour types, including melanoma, only a very small number of biomarkers have been identified. Recently, microRNAs (miRNAs) have emerged as a molecular regulator in the development and progression of melanoma. Aberrant activation of some known miRNAs, e.g. let-7a and b, miR-148, miR-155, miR-182, miR-200c, miR-211, miR-214, miR-221 and 222, has been recognised to be linked with melanoma-associated genes such as NRAS, microphthalmia-associated transcription factor, receptor tyrosine kinase c-KIT, AP-2 transcription factor, etc. There is accumulating evidence suggesting the potential impact of circulating miRNAs as diagnostic and therapeutic markers in diseases. In addition, miRNAs have turned out to play important roles in drug-resistance mechanisms; suggesting their modulation as a potential approach to overcome chemoresistance. This review highlights recent preclinical and clinical studies on circulating miRNAs and their potential role as diagnosis, and therapeutic targets in melanoma.


Frontiers in Surgery | 2016

Immune Evasion Strategies of Glioblastoma

Seyed-Mostafa Razavi; Karen E. Lee; Benjamin E. Jin; Parvir Aujla; Sharareh Gholamin; Gordon Li

Glioblastoma (GBM) is the most devastating brain tumor, with associated poor prognosis. Despite advances in surgery and chemoradiation, the survival of afflicted patients has not improved significantly in the past three decades. Immunotherapy has been heralded as a promising approach in treatment of various cancers; however, the immune privileged environment of the brain usually curbs the optimal expected response in central nervous system malignancies. In addition, GBM cells create an immunosuppressive microenvironment and employ various methods to escape immune surveillance. The purpose of this review is to highlight the strategies by which GBM cells evade the host immune system. Further understanding of these strategies and the biology of this tumor will pave the way for developing novel immunotherapeutic approaches for treatment of GBM.


Current Pharmaceutical Design | 2015

The potential for circulating microRNAs in the diagnosis of myocardial infarction: a novel approach to disease diagnosis and treatment

Sharareh Gholamin; Alireza Pasdar; Mohammad Sadegh Khorrami; Hamed Mirzaei; Hamid Reza Mirzaei; Rasoul Salehi; Gordon A. Ferns; Majid Ghayour-Mobarhan; Amir Avan

MicroRNAs (miRNAs) are a class of small regulatory RNAs that control several cellular processes that may contribute to development of cardiovascular disease (CVD) and the pathophysiological consequences of myocardial infarction (MI). Only a very small-numbers of biomarkers in MI (e.g., Troponin) have been identified, which are sufficiently sensitive, specific and robust. There is growing evidence of an association between specific miRNAs in the pathogenesis of MI. miRNAs are transported within the systemic circulation via exosomes and microparticles, and are therefore detectable in blood, urine, saliva, and other fluid compartments. Dysregulation of myocardial-derived miRNAs, such as miR-1, miR-133, miR-499, and miR-208, have been identified as potential biomarkers in MI. Furthermore, alteration of the levels of some miRNAs during stress-induced apoptosis is reported as a novel therapeutic strategy for cardiac disease. Modulation of mir-24 appears to inhibit cardiomyocyte apoptosis, attenuate infarct size, and reduce cardiac dysfunction. A greater knowledge on the molecular mechanism underlying the functional role of emerging miRNAs, could provide novel insights into identifying of new biomarkers. This review highlights several recent preclinical and clinical studies on the role of miRNAs in myocardial infarction; novel miRNA-based therapeutic approaches for therapeutic intervention, and potential circulating miRNA to be served as biomarkers in patients with suspected MI.


Science Translational Medicine | 2017

Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors

Sharareh Gholamin; Siddhartha Mitra; Abdullah H. Feroze; Jie Liu; Suzana Assad Kahn; Michael Zhang; Rogelio Esparza; Chase Richard; Vijay Ramaswamy; Marc Remke; Anne K. Volkmer; Stephen B. Willingham; Anitha Ponnuswami; Aaron McCarty; Patricia Lovelace; Theresa A. Storm; Simone Schubert; Gregor Hutter; Cyndhavi Narayanan; Pauline Chu; Eric Raabe; Griffith R. Harsh; Michael D. Taylor; Michelle Monje; Yoon Jae Cho; Ravi Majeti; Jens Peter Volkmer; Paul G. Fisher; Gerald A. Grant; Gary K. Steinberg

Anti-CD47 antibody is effective for treating malignant pediatric brain tumors without detectable toxicity in patient-derived xenograft models. Brain tumors, meet macrophages A protein called CD47 is often expressed on the surface of tumor cells, where it serves as a “don’t eat me” signal that blocks macrophages from attacking the tumor. To overcome this signal and allow the macrophages to “eat” tumor cells, Gholamin et al. engineered a humanized antibody that blocks CD47 signaling. The researchers tested the efficacy of this antibody in patient-derived xenograft models of a variety of pediatric brain tumors. The treatment was successful at inhibiting CD47, killing tumor cells, and prolonging the animals’ survival, all without toxic effects on normal tissues. Morbidity and mortality associated with pediatric malignant primary brain tumors remain high in the absence of effective therapies. Macrophage-mediated phagocytosis of tumor cells via blockade of the anti-phagocytic CD47-SIRPα interaction using anti-CD47 antibodies has shown promise in preclinical xenografts of various human malignancies. We demonstrate the effect of a humanized anti-CD47 antibody, Hu5F9-G4, on five aggressive and etiologically distinct pediatric brain tumors: group 3 medulloblastoma (primary and metastatic), atypical teratoid rhabdoid tumor, primitive neuroectodermal tumor, pediatric glioblastoma, and diffuse intrinsic pontine glioma. Hu5F9-G4 demonstrated therapeutic efficacy in vitro and in vivo in patient-derived orthotopic xenograft models. Intraventricular administration of Hu5F9-G4 further enhanced its activity against disseminated medulloblastoma leptomeningeal disease. Notably, Hu5F9-G4 showed minimal activity against normal human neural cells in vitro and in vivo, a phenomenon reiterated in an immunocompetent allograft glioma model. Thus, Hu5F9-G4 is a potentially safe and effective therapeutic agent for managing multiple pediatric central nervous system malignancies.


Journal of Medicinal Food | 2013

Red grape seed extract improves lipid profiles and decreases oxidized low-density lipoprotein in patients with mild hyperlipidemia.

Seyed Mostafa Razavi; Sharareh Gholamin; Ali Eskandari; Nakta Mohsenian; Amir Ghorbanihaghjo; Abbas Delazar; Nadereh Rashtchizadeh; Maryam Keshtkar-Jahromi; Hassan Argani

Hyperlipidemia can lead to atherosclerosis by lipoprotein deposition inside the vessel wall and oxidative stress induction that leads to the formation of atherosclerotic plaque. Oxidized low-density lipoprotein particles (Ox-LDL) have a key role in the pathogenesis of atherosclerosis. The lipid-lowering properties and antioxidants of the grape seed can be beneficial in atherosclerosis prevention. We conducted a randomized double-blind placebo-controlled crossover clinical trial. Fifty-two mildly hyperlipidemic individuals were divided into two groups that received either 200 mg/day of the red grape seed extract (RGSE) or placebo for 8 weeks. After an 8-week washout period, the groups were crossed over for another 8 weeks. Lipid profiles and Ox-LDL were measured at the beginning and the end of each phase. RGSE consumption reduced total cholesterol (-10.68±26.76 mg/dL, P=.015), LDL cholesterol (-9.66±23.92 mg/dL, P=.014), and Ox-LDL (-5.47±12.12 mg/dL, P=.008). While triglyceride and very low-density lipoprotein cholesterol were decreased and high-density lipoprotein cholesterol was increased by RGSE, the changes were not statistically significant. RGSE consumption decreases Ox-LDL and has beneficial effects on lipid profile-consequently decreasing the risk of atherosclerosis and cardiovascular disorders-in mild hyperlipidemic individuals.


PLOS ONE | 2016

Anti-CD47 Treatment Stimulates Phagocytosis of Glioblastoma by M1 and M2 Polarized Macrophages and Promotes M1 Polarized Macrophages In Vivo

Michael Zhang; Gregor Hutter; Suzana Assad Kahn; Tej D. Azad; Sharareh Gholamin; Chelsea Y. Xu; Jie Liu; Achal S. Achrol; Chase Richard; Pia Sommerkamp; Matthew K. Schoen; Melissa N. McCracken; Ravi Majeti; Irving L. Weissman; Siddhartha Mitra; Samuel H. Cheshier

Tumor-associated macrophages (TAMs) represent an important cellular subset within the glioblastoma (WHO grade IV) microenvironment and are a potential therapeutic target. TAMs display a continuum of different polarization states between antitumorigenic M1 and protumorigenic M2 phenotypes, with a lower M1/M2 ratio correlating with worse prognosis. Here, we investigated the effect of macrophage polarization on anti-CD47 antibody-mediated phagocytosis of human glioblastoma cells in vitro, as well as the effect of anti-CD47 on the distribution of M1 versus M2 macrophages within human glioblastoma cells grown in mouse xenografts. Bone marrow-derived mouse macrophages and peripheral blood-derived human macrophages were polarized in vitro toward M1 or M2 phenotypes and verified by flow cytometry. Primary human glioblastoma cell lines were offered as targets to mouse and human M1 or M2 polarized macrophages in vitro. The addition of an anti-CD47 monoclonal antibody led to enhanced tumor-cell phagocytosis by mouse and human M1 and M2 macrophages. In both cases, the anti-CD47-induced phagocytosis by M1 was more prominent than that for M2. Dissected tumors from human glioblastoma xenografted within NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice and treated with anti-CD47 showed a significant increase of M1 macrophages within the tumor. These data show that anti-CD47 treatment leads to enhanced tumor cell phagocytosis by both M1 and M2 macrophage subtypes with a higher phagocytosis rate by M1 macrophages. Furthermore, these data demonstrate that anti-CD47 treatment alone can shift the phenotype of macrophages toward the M1 subtype in vivo.


Oncogene | 2015

Casein kinase 2α regulates glioblastoma brain tumor-initiating cell growth through the β-catenin pathway.

Ryan T. Nitta; Sharareh Gholamin; Abdullah H. Feroze; Maya Agarwal; Samuel H. Cheshier; Siddhartha Mitra; Gordon Li

Glioblastoma (GBM) is the most common and fatal primary brain tumor in humans, and it is essential that new and better therapies are developed to treat this disease. Previous research suggests that casein kinase 2 (CK2) may be a promising therapeutic target for GBMs. CK2 has enhanced expression or activity in numerous cancers, including GBM, and it has been demonstrated that inhibitors of CK2 regressed tumor growth in GBM xenograft mouse models. Our studies demonstrate that the CK2 subunit, CK2α, is overexpressed in and has an important role in regulating brain tumor-initiating cells (BTIC) in GBM. Initial studies showed that two GBM cell lines (U87-MG and U138) transduced with CK2α had enhanced proliferation and anchorage-independent growth. Inhibition of CKα using siRNA or small-molecule inhibitors (TBBz, CX-4945) reduced cell growth, decreased tumor size, and increased survival rates in GBM xenograft mouse models. We also verified that inhibition of CK2α decreased the activity of a well-known GBM-initiating cell regulator, β-catenin. Loss of CK2α decreased two β-catenin-regulated genes that are involved in GBM-initiating cell growth, OCT4 and NANOG. To determine the importance of CK2α in GBM stem cell maintenance, we reduced CK2α activity in primary GBM samples and tumor spheres derived from GBM patients. We discovered that loss of CK2α activity reduced the sphere-forming capacity of BTIC and decreased numerous GBM stem cell markers, including CD133, CD90, CD49f and A2B5. Our study suggests that CK2α is involved in GBM tumorigenesis by maintaining BTIC through the regulation of β-catenin.


Nature Medicine | 2017

Gpr124 is essential for blood–brain barrier integrity in central nervous system disease

Junlei Chang; Michael R. Mancuso; Carolina M. Maier; Xibin Liang; Kanako Yuki; Lu Yang; Jeffrey W Kwong; Jing Wang; Varsha Rao; Mario Vallon; Cynthia Kosinski; J J Haijing Zhang; Amanda T. Mah; Lijun Xu; L Li; Sharareh Gholamin; Teresa F. Reyes; Rui Li; Frank Kuhnert; Xiaoyuan Han; Jenny Yuan; Shin-Heng Chiou; Ari D. Brettman; Lauren Daly; David C Corney; Samuel H. Cheshier; Linda D. Shortliffe; Xiwei Wu; Michael Snyder; Pak H. Chan

Although blood–brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt–β-catenin signaling. Constitutive activation of Wnt–β-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption.

Collaboration


Dive into the Sharareh Gholamin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge