Sharmila Chattopadhyay
Indian Institute of Chemical Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sharmila Chattopadhyay.
Proteome Science | 2012
Dipto Bhattacharyya; Ragini Sinha; Srijani Ghanta; Amrita Chakraborty; Saptarshi Hazra; Sharmila Chattopadhyay
BackgroundPodophyllotoxin (PTOX), the precursor for semi-synthesis of cancer therapeutics like etoposide, teniposide and etophos, is primarily obtained from an endangered medicinal herb, Podophyllum hexandrum Royle. PTOX, a lignan is biosynthetically derived from the phenylpropanoid pathway. The aim of this study is to investigate changes in the P. hexandrum cell proteome potentially related to PTOX accumulation in response to methyl jasmonate (MeJA) elicitation. High-resolution two-dimensional gel electrophoresis (2-DE) followed by colloidal Coomassie staining and mass spectrometric analysis was used to detect statistically significant changes in cell’s proteome.ResultThe HPLC analysis showed approximately 7–8 fold change in accumulation of PTOX, in the 12day old cell suspension culture (i.e. after 9days of elicitation) elicited with 100 μM MeJA as compared to the control. Using 2-DE a total of 233 spots was detected, out of which 105 spots were identified by MALDI TOF-TOF MS/MS. Data were subjected to functional annotation from a biological point of view through KEGG. The phenylpropanoid and monolignol pathway enzymes were identified, amongst these, chalcone synthase, polyphenol oxidase, caffeoyl CoA 3-O-methyltransferase, S-adenosyl-L-methionine-dependent methyltransferases, caffeic acid-O-methyl transferase etc. are noted as important. The relation of other differentially accumulated proteins with varied effects caused by elicitors on P. hexandrum cells namely stress and defense related protein, transcription and DNA replication and signaling are also discussed.ConclusionsElicitor-induced PTOX accumulation in P. hexandrum cell cultures provides a responsive model system to profile modulations in proteins related to phenylpropanoid/monolignol biosynthesis and other defense responses. Present findings form a baseline for future investigation on a non-sequenced medicinal herb P. hexandrum at molecular level.
Embo Molecular Medicine | 2012
Sayan Chowdhury; Tulika Mukherjee; Rupkatha Mukhopadhyay; Budhaditya Mukherjee; Souvik Sengupta; Sharmila Chattopadhyay; Parasuraman Jaisankar; Syamal Roy; Hemanta K. Majumder
Niranthin, a lignan isolated from the aerial parts of the plant Phyllanthus amarus, exhibits a wide spectrum of pharmacological activities. In the present study, we have shown for the first time that niranthin is a potent anti‐leishmanial agent. The compound induces topoisomerase I‐mediated DNA–protein adduct formation inside Leishmania cells and triggers apoptosis by activation of cellular nucleases. We also show that niranthin inhibits the relaxation activity of heterodimeric type IB topoisomerase of L. donovani and acts as a non‐competitive inhibitor interacting with both subunits of the enzyme. Niranthin interacts with DNA–protein binary complexes and thus stabilizes the ‘cleavable complex’ formation and subsequently inhibits the religation of cleaved strand. The compound inhibits the proliferation of Leishmania amastigotes in infected cultured murine macrophages with limited cytotoxicity to the host cells and is effective against antimony‐resistant Leishmania parasites by modulating upregulated P‐glycoprotein on host macrophages. Importantly, besides its in vitro efficacy, niranthin treatment leads to a switch from a Th2‐ to a Th1‐type immune response in infected BALB/c mice. The immune response causes production of nitric oxide, which results in almost complete clearance of the liver and splenic parasite burden after intraperitoneal or intramuscular administration of the drug. These findings can be exploited to develop niranthin as a new drug candidate against drug‐resistant leishmaniasis.
Journal of Plant Physiology | 2014
Srijani Ghanta; Riddhi Datta; Dipto Bhattacharyya; Ragini Sinha; Deepak Kumar; Saptarshi Hazra; Aparupa Bose Mazumdar; Sharmila Chattopadhyay
The role of glutathione (GSH) in plant defense is an established fact. However, the association of GSH with other established signaling molecules within the defense signaling network remains to be evaluated. Previously we have shown that GSH is involved in defense signaling network likely through NPR1-dependent salicylic acid (SA)-mediated pathway. In this study, to gain further insight, we developed chloroplast-targeted gamma-glutamylcysteine synthetase (γ-ECS) overexpressed transgenic Nicotiana tabacum (NtGp line) and constructed a forward subtracted cDNA (suppression subtractive hybridization (SSH)) library using NtGp line as a tester. Interestingly, in addition to SA-related transcripts like pathogenesis-related protein 1a (PR1a) and SAR8.2 m/2l, 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase), a key enzyme of ethylene (ET) biosynthesis, was identified in the SSH library. Besides, transcription factors like WRKY transcription factor 3 (WRKY3), WRKY1 and ethylene responsive factor 4 (ERF4), associated with SA and ET respectively, were also identified thus suggesting an interplay of GSH with ET and SA. Furthermore, proteomic profiling of NtGp line, performed by employing two-dimensional gel electrophoresis (2-DE), corroborated with the transcriptomic profile and several defense-related proteins like serine/threonine protein kinase, and heat shock 70 protein (HSP70) were identified with increased accumulation. Fascinatingly, induction of 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) was also noted thus demonstrating the active involvement of GSH with ET. Protein gel blot analysis confirmed the enhanced accumulation of ACC oxidase in NtGp line. Together, our data revealed that GSH is involved in the synergistic multiple steps crosstalk through ET as well as SA to combat environmental stress.
PLOS ONE | 2015
Deepak Kumar; Riddhi Datta; Saptarshi Hazra; Asma Sultana; Ria Mukhopadhyay; Sharmila Chattopadhyay
The contribution of glutathione (GSH) in stress tolerance, defense response and antioxidant signaling is an established fact. In this study transcriptome analysis of pad2.1, an Arabidopsis thaliana mutant, after combined osmotic and cold stress treatment has been performed to explore the intricate position of GSH in the stress and defense signaling network in planta. Microarray data revealed the differential regulation of about 1674 genes in pad2.1 amongst which 973 and 701 were significantly up- and down-regulated respectively. Gene enrichment, functional pathway analysis by DAVID and MapMan analysis identified various stress and defense related genes viz. members of heat shock protein family, peptidyl prolyl isomerase (PPIase), thioredoxin peroxidase (TPX2), glutathione-S-transferase (GST), NBS-LRR type resistance protein etc. as down-regulated. The expression pattern of the above mentioned stress and defense related genes and APETALA were also validated by comparative proteomic analysis of combined stress treated Col-0 and pad2.1. Functional annotation noted down-regulation of UDP-glycosyl transferase, 4-coumarate CoA ligase 8, cinnamyl alcohol dehydrogenase 4 (CAD4), ACC synthase and ACC oxidase which are the important enzymes of phenylpropanoid, lignin and ethylene (ET) biosynthetic pathway respectively. Since the only difference between Col-0 (Wild type) and pad2.1 is the content of GSH, so, this study suggested that in addition to its association with specific stress responsive genes and proteins, GSH provides tolerance to plants by its involvement with phenylpropanoid, lignin and ET biosynthesis under stress conditions.
Planta Medica | 2008
Avijit Poddar; Anindita Banerjee; Srijani Ghanta; Sharmila Chattopadhyay
Bioactivity-guided fractionation has led to the successful isolation of calceolarioside A ( 1) from the methanolic extract of night jasmine leaves. The in vitro antileishmanial activity of compound 1 was determined (IC (50) = 20 microg/mL). Its IN VIVO efficacy was noted at 20 mg/kg body weight when it reduced the hepatic and splenic parasite burden by 79 and 84 %, respectively, in an established model of L. donovani Ag83 infected golden hamster. Furthermore, synergistic potentiations of compound 1 at 20 mg/kg body weight and SAG at 5 mg/kg body weight showed a significant reduction of hepatic and splenic parasite burden. No cytotoxicity was observed against the U937 cell line. This is the first report describing the isolation of compound 1 from N. arbor-tristis L. and the first demonstration of its potent activity against visceral leishmaniasis.
Journal of Proteomics | 2013
Ragini Sinha; Dipto Bhattacharyya; Aparupa Bose Majumdar; Riddhi Datta; Saptarshi Hazra; Sharmila Chattopadhyay
UNLABELLED The genus Mentha has been widely used in food, flavor, culinary, cosmetic and pharmaceutical industries. Substantial damage to this crop happened regularly due to environmental stresses like metal toxicity and pathogen attack. Here, an approach has been taken to raise transgenic mint over-expressing γ-glutamyl-cysteine synthetase (γ-ECS), the rate-limiting enzyme of GSH biosynthesis, resulted enhanced GSH content and its in planta expression confers significant tolerance towards abiotic/biotic stresses viz. metal toxicity - Cd, Zn as well as against infection of Alternaria alternata and Rhizoctonia solani. A differential proteomic analysis through 2-DE and MALDI TOF-TOF MSMS was performed to focus on the altered abundance of functionally important protein species in control and infected transgenic mint. Results showed a significant variation in the protein profile of the infected transgenic plant as compared to the wild/control transgenic counterpart. In addition to protein species related to stress and defense, redox regulation, transcription factors and energy & metabolism, protein species related to signaling and gene regulation as well as cell division also showed differential accumulation in infected transgenic. Hence, proteomics can be used as a tool to decipher the mechanism of action of GSH in providing tolerance against a necrotrophic fungus, A. alternata in transgenic mint. BIOLOGICAL SIGNIFICANCE The reported work describes a comparative proteomics of non-model unsequenced plants like Mentha. There is a comparative protein profile between transgenic and its wild counterparts under control and infected condition. The work has an impact in crop proteomics and also tries to explain the application of proteomic approach to decipher the mechanism by which a foreign metabolite mediates stress tolerance in plant under control and infected condition. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Scientific Reports | 2016
Deepak Kumar; Saptarshi Hazra; Riddhi Datta; Sharmila Chattopadhyay
The involvement of ethylene and abscisic acid in providing stress tolerance and defence response to plants is widely recognized. However, little is known about the cross-talk between glutathione with ethylene and abscisic acid to combat stress in planta. Here, transcriptome analysis of combined cold and osmotic stress treated Arabidopsis mutants were carried out to elucidate the crosstalk between the abscisic acid, ethylene and glutathione. Microarray experiment revealed the differential regulation of about 2313 and 4131 transcripts in ein2 (ethylene insensitive mutant) and aba1.6 (abscisic acid mutant) respectively. Functional analysis exposed common down-regulated stress and defence, secondary metabolite biosynthesis viz. phenylpropanoid, lignin and flavonols, redox and transcription factors related genes in ein2, aba1.6 and pad2.1 (glutathione mutant) in response to combined stress treatment. The reduced glutathione content was less in stress treated mutants in comparison to Col-0. Again, selective down-regulated transcripts in stress treated mutants were noted up-regulated after glutathione feeding. Some of the important differentially expressed genes were also validated by comparative proteomics analysis of stress treated mutants. In summary, our results suggested the role of ethylene and abscisic acid in inducing stress-responsive genes and proteins by activating glutathione biosynthesis to combat abiotic stress conditions in plant system.
Plant Signaling & Behavior | 2014
Deepak Kumar; Riddhi Datta; Ragini Sinha; Aparupa Ghosh; Sharmila Chattopadhyay
The contribution of Glutathione (GSH) in drought stress tolerance is an established fact. However, the proteins which are directly or indirectly related to the increased level of GSH in response to drought stress are yet to be known. To explore this, here, transgenic tobacco plants (NtGp11) overexpressing gamma-glutamylcysteine synthetase (γ-ECS) was tested for tolerance against drought stress. NtGp11 conferred tolerance to drought stress by increased germination rate, water retention, water recovery, chlorophyll, and proline content compared with wild-type plants. Semi-quantitative RT-PCR analysis revealed that the transcript levels of stress-responsive genes were higher in NtGp11 compared with wild-type in response to drought stress. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI TOF-TOF MS/MS analysis has been used to identify 43 differentially expressed proteins in response to drought in wild-type and NtGp11 plants. The results demonstrated the up-accumulation of 58.1% of proteins among which 36%, 24%, and 20% of them were related to stress and defense, carbon metabolism and energy metabolism categories, respectively. Taken together, our results demonstrated that GSH plays an important role in combating drought stress in plants by inducing stress related genes and proteins like HSP70, chalcone synthase, glutathione peroxidase, thioredoxin peroxidase, ACC oxidase, and heme oxygenase I.
Journal of Proteomics | 2015
Riddhi Datta; Sharmila Chattopadhyay
The involvement of glutathione (GSH) in plant defense against pathogen invasion is an established fact. However, the molecular mechanism conferring this tolerance remains to be explored. Here, proteomic analysis of pad2-1, an Arabidopsis thaliana GSH-depleted mutant, in response to Pseudomonas syringae infection has been performed to explore the intricate position of GSH in defense against biotrophic pathogens. The pad2-1 mutant displayed severe susceptibility to P. syringae infection compared to the wild-type (Col-0) thus re-establishing a fundamental role of GSH in defense. Apart from general up-accumulation of energy metabolism-related protein-species in both infected Col-0 and pad2-1, several crucial defense-related protein-species were identified to be differentially accumulated. Leucine-rich repeat-receptor kinase (LRR-RK) and nucleotide-binding site-leucine-rich repeat resistance protein (NBS-LRR), known to play a pioneering role against pathogen attack, were only weakly up-accumulated in pad2-1 after infection. Transcriptional and post-transcriptional regulators like MYB-P1 and glycine-rich repeat RNA-binding protein (GRP) and several other stress-related protein-species like heat shock protein 17 (HSP17) and glutathione-S-transferase (GST) were also identified to be differentially regulated in pad2-1 and Col-0 in response to infection. Together, the present investigation reveals that the optimum GSH-level is essential for the efficient activation of plant defense signaling cascades thus conferring resistance to pathogen invasion.
RSC Advances | 2015
Yeasmin Sarkar; Sanju Das; Riddhi Datta; Sharmila Chattopadhyay; Ambarish Ray; Partha Pratim Parui
A hydrolysis resistant Schiff-base ligand (L1) consisting of an aromatic aldimine moiety appended to a triazole precursor along with phenolic–OH has been synthesized which acts as a fluorescence probe and exhibits rare selective sensing ability for boric acid (BA) in aqueous buffer medium at pH 7.3 by forming a 1 : 1 chelate complex. Reasons behind the complexation and subsequent fluorescence enhancement are well established using experimental as well as theoretical evidence. Bio-imaging studies are done using Arabidopsis Thaliana as the model plant system.