Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharmila Dorbala is active.

Publication


Featured researches published by Sharmila Dorbala.


Circulation | 2011

Improved Cardiac Risk Assessment With Noninvasive Measures of Coronary Flow Reserve

Venkatesh L. Murthy; Masanao Naya; Courtney Foster; Jon Hainer; Mariya Gaber; Gilda Di Carli; Ron Blankstein; Sharmila Dorbala; Arkadiusz Sitek; Michael J. Pencina; Marcelo F. Di Carli

Background— Impaired vasodilator function is an early manifestation of coronary artery disease and may precede angiographic stenosis. It is unknown whether noninvasive assessment of coronary vasodilator function in patients with suspected or known coronary artery disease carries incremental prognostic significance. Methods and Results— A total of 2783 consecutive patients referred for rest/stress positron emission tomography were followed up for a median of 1.4 years (interquartile range, 0.7–3.2 years). The extent and severity of perfusion abnormalities were quantified by visual evaluation of myocardial perfusion images. Rest and stress myocardial blood flows were calculated with factor analysis and a 2-compartment kinetic model and were used to compute coronary flow reserve (coronary flow reserve equals stress divided by rest myocardial blood flow). The primary end point was cardiac death. Overall 3-year cardiac mortality was 8.0%. The lowest tertile of coronary flow reserve (<1.5) was associated with a 5.6-fold increase in the risk of cardiac death (95% confidence interval, 2.5–12.4; P<0.0001) compared with the highest tertile. Incorporation of coronary flow reserve into cardiac death risk assessment models resulted in an increase in the c index from 0.82 (95% confidence interval, 0.78–0.86) to 0.84 (95% confidence interval, 0.80–0.87; P=0.02) and in a net reclassification improvement of 0.098 (95% confidence interval, 0.025–0.180). Addition of coronary flow reserve resulted in correct reclassification of 34.8% of intermediate-risk patients (net reclassification improvement=0.487; 95% confidence interval, 0.262–0.731). Corresponding improvements in risk assessment for mortality from any cause were also demonstrated. Conclusion— Noninvasive quantitative assessment of coronary vasodilator function with positron emission tomography is a powerful, independent predictor of cardiac mortality in patients with known or suspected coronary artery disease and provides meaningful incremental risk stratification over clinical and gated myocardial perfusion imaging variables.


Circulation | 2008

Interrelation of Coronary Calcification, Myocardial Ischemia, and Outcomes in Patients With Intermediate Likelihood of Coronary Artery Disease A Combined Positron Emission Tomography/Computed Tomography Study

Matthew P. Schenker; Sharmila Dorbala; Eric Hong; Frank J. Rybicki; Rory Hachamovitch; Raymond Y. Kwong; Marcelo F. Di Carli

Background— Although the value of coronary artery calcium (CAC) for atherosclerosis screening is gaining acceptance, its efficacy in predicting flow-limiting coronary artery disease remains controversial, and its incremental prognostic value over myocardial perfusion is not well established. Methods and Results— We evaluated 695 consecutive intermediate-risk patients undergoing combined rest-stress rubidium 82 positron emission tomography (PET) perfusion imaging and CAC scoring on a hybrid PET-computed tomography (CT) scanner. The frequency of abnormal scans among patients with a CAC score ≥400 was higher than that in patients with a CAC score of 1 to 399 (48.5% versus 21.7%, P<0.001). Multivariate logistic regression supported the concept of a threshold CAC score ≥400 governing this relationship (odds ratio 2.91, P<0.001); however, the frequency of ischemia among patients with no CAC was 16.0%, and its absence only afforded a negative predictive value of 84.0%. Risk-adjusted survival analysis demonstrated a stepwise increase in event rates (death and myocardial infarction) with increasing CAC scores in patients with and without ischemia on PET myocardial perfusion imaging. Among patients with normal PET myocardial perfusion imaging, the annualized event rate in patients with no CAC was lower than in those with a CAC score ≥1000 (2.6% versus 12.3%, respectively). Likewise, in patients with ischemia on PET myocardial perfusion imaging, the annualized event rate in those with no CAC was lower than among patients with a CAC score ≥1000 (8.2% versus 22.1%). Conclusions— Although increasing CAC content is generally predictive of a higher likelihood of ischemia, its absence does not completely eliminate the possibility of flow-limiting coronary artery disease. Importantly, a stepwise increase occurs in the risk of adverse events with increasing CAC scores in patients with and without ischemia on PET myocardial perfusion imaging.


Journal of the American College of Cardiology | 2013

Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making.

K. Lance Gould; Nils P. Johnson; Timothy M. Bateman; Rob S. Beanlands; Frank M. Bengel; Robert M. Bober; Paolo G. Camici; Manuel D. Cerqueira; Benjamin J.W. Chow; Marcelo F. Di Carli; Sharmila Dorbala; Henry Gewirtz; Robert J. Gropler; Philipp A. Kaufmann; Paul Knaapen; Juhani Knuuti; Michael E. Merhige; K.Peter Rentrop; Terrence D. Ruddy; Heinrich R. Schelbert; Thomas H. Schindler; Markus Schwaiger; Stefano Sdringola; John Vitarello; Kim A. Williams; Donald Gordon; Vasken Dilsizian; Jagat Narula

Angiographic severity of coronary artery stenosis has historically been the primary guide to revascularization or medical management of coronary artery disease. However, physiologic severity defined by coronary pressure and/or flow has resurged into clinical prominence as a potential, fundamental change from anatomically to physiologically guided management. This review addresses clinical coronary physiology-pressure and flow-as clinical tools for treating patients. We clarify the basic concepts that hold true for whatever technology measures coronary physiology directly and reliably, here focusing on positron emission tomography and its interplay with intracoronary measurements.


The Journal of Nuclear Medicine | 2007

Clinical Myocardial Perfusion PET/CT

Marcelo F. Di Carli; Sharmila Dorbala; Jolene Meserve; Georges El Fakhri; Arkadiusz Sitek; Stephen C. Moore

The field of nuclear cardiology is witnessing growing interest in the use of cardiac PET for the evaluation of patients with coronary artery disease (CAD). The available evidence suggests that myocardial perfusion PET provides an accurate means for diagnosing obstructive CAD, which appears superior to SPECT especially in the obese and in those undergoing pharmacologic stress. The ability to record changes in left ventricular function from rest to peak stress and to quantify myocardial perfusion (in mL/min/g of tissue) provides an added advantage over SPECT for evaluating multivessel CAD. There is growing and consistent evidence that gated myocardial perfusion PET also provides clinically useful risk stratification. Although the introduction of hybrid PET/CT technology offers the exciting possibility of assessing the extent of anatomic CAD (CT coronary angiography) and its functional consequences (ischemic burden) in the same setting, there are technical challenges in the implementation of CT-based transmission imaging for attenuation correction. Nonetheless, this integrated platform for assessing anatomy and biology offers a great potential for translating advances in molecularly targeted imaging into humans.


Circulation | 2012

Association Between Coronary Vascular Dysfunction and Cardiac Mortality in Patients With and Without Diabetes Mellitus

Venkatesh L. Murthy; Masanao Naya; Courtney Foster; Mariya Gaber; Jon Hainer; Josh Klein; Sharmila Dorbala; Ron Blankstein; Marcelo F. Di Carli

Background— Diabetes mellitus increases the risk of adverse cardiac outcomes and is considered a coronary artery disease (CAD) equivalent. We examined whether coronary vascular dysfunction, an early manifestation of CAD, accounts for increased risk among diabetics compared with nondiabetics. Methods and Results— A total of 2783 consecutive patients (1172 diabetics and 1611 nondiabetics) underwent quantification of coronary flow reserve (CFR; CFR=stress divided by rest myocardial blood flow) by positron emission tomography and were followed up for a median of 1.4 years (quartile 1–3, 0.7–3.2 years). The primary end point was cardiac death. Impaired CFR (below the median) was associated with an adjusted 3.2- and 4.9-fold increase in the rate of cardiac death for diabetics and nondiabetics, respectively (P=0.0004). Addition of CFR to clinical and imaging risk models improved risk discrimination for both diabetics and nondiabetics (c index, 0.77–0.79, P=0.04; 0.82–0.85, P=0.03, respectively). Diabetic patients without known CAD with impaired CFR experienced a rate of cardiac death comparable to that for nondiabetic patients with known CAD (2.8%/y versus 2.0%/y; P=0.33). Conversely, diabetics without known CAD and preserved CFR had very low annualized cardiac mortality, which was similar to patients without known CAD or diabetes mellitus and normal stress perfusion and systolic function (0.3%/y versus 0.5%/y; P=0.65). Conclusions— Coronary vasodilator dysfunction is a powerful, independent correlate of cardiac mortality among both diabetics and nondiabetics and provides meaningful incremental risk stratification. Among diabetic patients without CAD, those with impaired CFR have event rates comparable to those of patients with prior CAD, whereas those with preserved CFR have event rates comparable to those of nondiabetics.


Circulation | 2016

Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis

Julian D. Gillmore; Mathew S. Maurer; Rodney H. Falk; Giampaolo Merlini; Thibaud Damy; Angela Dispenzieri; Ashutosh D. Wechalekar; John L. Berk; Candida Cristina Quarta; Martha Grogan; Helen J. Lachmann; Sabahat Bokhari; Adam Castano; Sharmila Dorbala; Geoff B. Johnson; Andor W. J. M. Glaudemans; Tamer Rezk; Marianna Fontana; Giovanni Palladini; Paolo Milani; Pierluigi Guidalotti; Katarina Flatman; Thirusha Lane; Frederick W. Vonberg; Carol J. Whelan; James C. Moon; Frederick L. Ruberg; Edward J. Miller; David F. Hutt; Bouke Hazenberg

Background— Cardiac transthyretin (ATTR) amyloidosis is a progressive and fatal cardiomyopathy for which several promising therapies are in development. The diagnosis is frequently delayed or missed because of the limited specificity of echocardiography and the traditional requirement for histological confirmation. It has long been recognized that technetium-labeled bone scintigraphy tracers can localize to myocardial amyloid deposits, and use of this imaging modality for the diagnosis of cardiac ATTR amyloidosis has lately been revisited. We conducted a multicenter study to ascertain the diagnostic value of bone scintigraphy in this disease. Methods and Results— Results of bone scintigraphy and biochemical investigations were analyzed from 1217 patients with suspected cardiac amyloidosis referred for evaluation in specialist centers. Of 857 patients with histologically proven amyloid (374 with endomyocardial biopsies) and 360 patients subsequently confirmed to have nonamyloid cardiomyopathies, myocardial radiotracer uptake on bone scintigraphy was >99% sensitive and 86% specific for cardiac ATTR amyloid, with false positives almost exclusively from uptake in patients with cardiac AL amyloidosis. Importantly, the combined findings of grade 2 or 3 myocardial radiotracer uptake on bone scintigraphy and the absence of a monoclonal protein in serum or urine had a specificity and positive predictive value for cardiac ATTR amyloidosis of 100% (positive predictive value confidence interval, 98.0–100). Conclusions— Bone scintigraphy enables the diagnosis of cardiac ATTR amyloidosis to be made reliably without the need for histology in patients who do not have a monoclonal gammopathy. We propose noninvasive diagnostic criteria for cardiac ATTR amyloidosis that are applicable to the majority of patients with this disease.


Jacc-cardiovascular Imaging | 2009

Incremental Prognostic Value of Gated Rb-82 Positron Emission Tomography Myocardial Perfusion Imaging Over Clinical Variables and Rest LVEF

Sharmila Dorbala; Rory Hachamovitch; Zelmira Curillova; Deepak Thomas; Divya Vangala; Raymond Y. Kwong; Marcelo F. Di Carli

OBJECTIVES This investigation sought to study the incremental value of gated rubidium (Rb)-82 positron emission tomography (PET) myocardial perfusion imaging (MPI) over clinical variables for predicting survival and future cardiac events. BACKGROUND The prognostic value of Rb-82 PET-MPI and left ventricular ejection fraction (LVEF) reserve (stress minus rest LVEF) is not well defined. METHODS 1,432 consecutive patients undergoing gated rest/vasodilator stress rubidium-82 PET were followed up for at least 1 year. Of these, rest and peak stress LVEF and LVEF reserve were available in 985 patients. Cardiac events (CE) including cardiac death or nonfatal myocardial infarction and all-cause death were assessed. RESULTS Over a mean follow-up of 1.7 +/- 0.7 years, 83 (5.8%) CE and 140 (9.7%) all-cause death were observed. There was an increase in risk for both end points with an increasing percentage of abnormal and ischemic myocardium. With normal, mild, moderate, or severely ischemic scans, the observed annualized rates of CE were 0.7%, 5.5%, 5%, and 11% and of all-cause death were 3.3%, 7.2%, 6.9%, and 12.5%, respectively. In 985 patients with peak stress gated data, the observed annualized rates of CE (2.1% vs. 5.3%, p < 0.001) and all-cause death (4.3% vs. 9.2%, p < 0.001) were higher in patients with an LVEF reserve <0% compared with those with an LVEF reserve >or=0%. On Cox proportional hazards analysis, after consideration of clinical, historical, and rest LVEF information, stress PET results and LVEF reserve yielded incremental prognostic value with respect to both CE and all-cause death. CONCLUSIONS Vasodilator stress Rb-82 PET-MPI provides incremental prognostic value to historical/clinical variables and rest LVEF to predict survival free of CE and all-cause death. An increasing percentage of ischemia on PET-MPI is associated with an increase in the risk of CE and all-cause death. Left ventricular ejection fraction reserve provides significant independent and incremental value to Rb-82 MPI for predicting the risk of future adverse events.


Circulation | 2014

Effects of Sex on Coronary Microvascular Dysfunction and Cardiac Outcomes

Venkatesh L. Murthy; Masanao Naya; Viviany R. Taqueti; Courtney Foster; Mariya Gaber; Jon Hainer; Sharmila Dorbala; Ron Blankstein; Ornella Rimoldi; Paolo G. Camici; Marcelo F. Di Carli

Background— Coronary microvascular dysfunction (CMD) is a prevalent and prognostically important finding in patients with symptoms suggestive of coronary artery disease. The relative extent to which CMD affects both sexes is largely unknown. Methods and Results— We investigated 405 men and 813 women who were referred for evaluation of suspected coronary artery disease with no previous history of coronary artery disease and no visual evidence of coronary artery disease on rest/stress positron emission tomography myocardial perfusion imaging. Coronary flow reserve was quantified, and coronary flow reserve <2.0 was used to define the presence of CMD. Major adverse cardiac events, including cardiac death, nonfatal myocardial infarction, late revascularization, and hospitalization for heart failure, were assessed in a blinded fashion over a median follow-up of 1.3 years (interquartile range, 0.5–2.3 years). CMD was highly prevalent both in men and women (51% and 54%, respectively; Fisher exact test =0.39; equivalence P=0.0002). Regardless of sex, coronary flow reserve was a powerful incremental predictor of major adverse cardiac events (hazard ratio, 0.80 [95% confidence interval, 0.75–086] per 10% increase in coronary flow reserve; P<0.0001) and resulted in favorable net reclassification improvement (0.280 [95% confidence interval, 0.049–0.512]), after adjustment for clinical risk and ventricular function. In a subgroup (n=404; 307 women/97 men) without evidence of coronary artery calcification on gated computed tomography imaging, CMD was common in both sexes, despite normal stress perfusion imaging and no coronary artery calcification (44% of men versus 48% of women; Fisher exact test P=0.56; equivalence P=0.041). Conclusions— CMD is highly prevalent among at-risk individuals and is associated with adverse outcomes regardless of sex. The high prevalence of CMD in both sexes suggests that it may be a useful target for future therapeutic interventions.


Journal of the American College of Cardiology | 2012

Patient management after noninvasive cardiac imaging: Results from SPARC (Study of myocardial perfusion and coronary anatomy imaging roles in coronary artery disease)

Rory Hachamovitch; Benjamin Nutter; Mark A. Hlatky; Leslee J. Shaw; Michael Ridner; Sharmila Dorbala; Rob S. Beanlands; Benjamin J.W. Chow; Elizabeth Branscomb; Panithaya Chareonthaitawee; W. Guy Weigold; Szilard Voros; Suhny Abbara; Tsunehiro Yasuda; Jill E. Jacobs; John R. Lesser; Daniel S. Berman; Louise Thomson; Subha V. Raman; Gary V. Heller; Adam Schussheim; Richard C. Brunken; Kim A. Williams; Susan Farkas; Dominique Delbeke; Schoepf Uj; Nathaniel Reichek; Stuart Rabinowitz; Steven R. Sigman; Randall Patterson

OBJECTIVES This study examined short-term cardiac catheterization rates and medication changes after cardiac imaging. BACKGROUND Noninvasive cardiac imaging is widely used in coronary artery disease, but its effects on subsequent patient management are unclear. METHODS We assessed the 90-day post-test rates of catheterization and medication changes in a prospective registry of 1,703 patients without a documented history of coronary artery disease and an intermediate to high likelihood of coronary artery disease undergoing cardiac single-photon emission computed tomography, positron emission tomography, or 64-slice coronary computed tomography angiography. RESULTS Baseline medication use was relatively infrequent. At 90 days, 9.6% of patients underwent catheterization. The rates of catheterization and medication changes increased in proportion to test abnormality findings. Among patients with the most severe test result findings, 38% to 61% were not referred to catheterization, 20% to 30% were not receiving aspirin, 35% to 44% were not receiving a beta-blocker, and 20% to 25% were not receiving a lipid-lowering agent at 90 days after the index test. Risk-adjusted analyses revealed that compared with stress single-photon emission computed tomography or positron emission tomography, changes in aspirin and lipid-lowering agent use was greater after computed tomography angiography, as was the 90-day catheterization referral rate in the setting of normal/nonobstructive and mildly abnormal test results. CONCLUSIONS Overall, noninvasive testing had only a modest impact on clinical management of patients referred for clinical testing. Although post-imaging use of cardiac catheterization and medical therapy increased in proportion to the degree of abnormality findings, the frequency of catheterization and medication change suggests possible undertreatment of higher risk patients. Patients were more likely to undergo cardiac catheterization after computed tomography angiography than after single-photon emission computed tomography or positron emission tomography after normal/nonobstructive and mildly abnormal study findings. (Study of Perfusion and Anatomys Role in Coronary Artery [CAD] [SPARC]; NCT00321399).


The Journal of Nuclear Medicine | 2009

Reproducibility and Accuracy of Quantitative Myocardial Blood Flow Assessment with 82Rb PET: Comparison with 13N-Ammonia PET

Georges El Fakhri; Arash Kardan; Arkadiusz Sitek; Sharmila Dorbala; Nathalie Abi-Hatem; Youmna Lahoud; Alan J. Fischman; Martha Coughlan; Tsunehiro Yasuda; Marcelo F. Di Carli

82Rb cardiac PET allows the assessment of myocardial perfusion with a column generator in clinics that lack a cyclotron. There is evidence that the quantitation of myocardial blood flow (MBF) and coronary flow reserve (CFR) with dynamic 82Rb PET is feasible. The objectives of this study were to determine the accuracy and reproducibility of MBF estimates from dynamic 82Rb PET by using our methodology for generalized factor analysis (generalized factor analysis of dynamic sequences [GFADS]) and compartment analysis. Methods: Reproducibility was evaluated in 22 subjects undergoing dynamic rest and dipyridamole stress 82Rb PET studies at a 2-wk interval. The inter- and intraobserver variability of MBF quantitation with dynamic 82Rb PET was assessed with 4 repeated estimations by each of 4 observers. Accuracy was evaluated in 20 subjects undergoing dynamic rest and dipyridamole stress PET studies with 82Rb and 13N-ammonia, respectively. The left ventricular and right ventricular blood pool and left ventricular tissue time–activity curves were estimated by GFADS. MBF was estimated by fitting the blood pool and tissue time–activity curves to a 2-compartment kinetic model for 82Rb and to a 3-compartment model for 13N-ammonia. CFR was estimated as the ratio of peak MBF to baseline MBF. Results: The reproducibility of the MBF estimates in repeated 82Rb studies was very good at rest and during peak stress (R2= 0.935), as was the reproducibility of the CFR estimates (R2 = 0.841). The slope of the correlation line was very close to one for the estimation of MBF (0.986) and CFR (0.960) in repeated 82Rb studies. The intraobserver reliability was less than 3% for the estimation of MBF at rest and during peak stress as well as for the estimation of CFR. The interobserver reliabilities were 0.950 at rest and 0.975 at peak stress. The correlation between myocardial flow estimates obtained at rest and those obtained during peak stress in 82Rb and 13N-ammonia studies was very good (R2 = 0.857). Bland–Altman plots comparing CFR estimated with 82Rb and CFR estimated with 13N-ammonia revealed an underestimation of CFR with 82Rb compared with 13N-ammonia; the underestimation was within ±1.96 SD. Conclusion: MBF quantitation with GFADS and dynamic 82Rb PET demonstrated excellent reproducibility as well as intra- and interobserver reliability. The accuracy of the absolute quantitation of MBF with factor and compartment analyses and dynamic 82Rb PET was very good, compared with that achieved with 13N-ammonia, for MBF of up to 2.5 mL/g/min.

Collaboration


Dive into the Sharmila Dorbala's collaboration.

Top Co-Authors

Avatar

Marcelo F. Di Carli

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ron Blankstein

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jon Hainer

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Courtney Foster

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Viviany R. Taqueti

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Hicham Skali

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Daniel S. Berman

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Raymond Y. Kwong

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge