Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharmistha Das is active.

Publication


Featured researches published by Sharmistha Das.


Oncogene | 2004

Induction of PDCD4 tumor suppressor gene expression by RAR agonists, antiestrogen and HER-2/neu antagonist in breast cancer cells. Evidence for a role in apoptosis.

Olubunmi Afonja; Dominique Juste; Sharmistha Das; Sachiko Matsuhashi; Herbert H. Samuels

The growth of human breast tumor cells is regulated through signaling involving cell surface growth factor receptors and nuclear receptors of the steroid/thyroid/retinoid receptor gene family. Retinoic acid receptors (RARs), members of the steroid/thyroid hormone receptor gene family, are ligand-dependent transcription factors, which have in vitro and in vivo growth inhibitory activity against breast cancer cells. RAR-agonists inhibit the proliferation of many human breast cancer cell lines, particularly those whose growth is stimulated by estradiol (E2) or growth factors. Additionally, RAR-agonists and synthetic retinoids such as Ferentinide have been shown to induce apoptosis in malignant breast cells but not normal breast cells. To better define the genes involved in RAR-mediated growth inhibition of breast cancer cells, we used oligonucleotide microarray analysis to create a database of genes that are potentially regulated by RAR-agonists in breast cancer cells. We found that PDCD4 (programmed cell death 4), a tumor suppressor gene presently being evaluated as a target for chemoprevention, was induced about three-fold by the RARα-selective agonist Am580, in T-47D breast cancer cells. RAR pan-agonists and Am580, but not retinoid X receptors (RXR)-agonists, stimulate the expression of PDCD4 in a wide variety of retinoid-inhibited breast cancer cell lines. RAR-agonists did not induce PDCD4 expression in breast cancer cell lines, which were not growth inhibited by retinoids. We also observed that antiestrogen and the HER-2/neu antagonist, Herceptin (Trastuzumab), also induced PDCD4 expression in T-47D cells, suggesting that PDCD4 may play a central role in growth inhibition in breast cancer cells. Transient overexpression of PDCD4 in T-47D (ER+, RAR+) and MDA-MB-231 (ER−, RAR−) cells resulted in apoptotic death, suggesting a role for PDCD4 in mediating apoptosis in breast cancer cells. PDCD4 protein expression has previously been reported in small ductal epithelium of normal breast. To date, there has been no report of induction of PDCD4 expression by RAR-agonists, antiestrogen or HER2/neu antagonist in breast cancer cells and its potential role in apoptosis in these cells.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Discovery of diverse thyroid hormone receptor antagonists by high-throughput docking

Matthieu Schapira; Bruce M. Raaka; Sharmistha Das; Li Fan; Maxim Totrov; Zhiguo Zhou; Stephen R. Wilson; Ruben Abagyan; Herbert H. Samuels

Treatment of hyperthyroidism, a common clinical condition that can have serious manifestations in the elderly, has remained essentially unchanged for >30 years. Directly antagonizing the effect of the thyroid hormone at the receptor level may be a significant improvement for the treatment of hyperthyroid patients. We built a computer model of the thyroid hormone receptor (TR) ligand-binding domain in its predicted antagonist-bound conformation and used a virtual screening algorithm to select 100 TR antagonist candidates out of a library of >250,000 compounds. We were able to obtain 75 of the compounds selected in silico and studied their ability to act as antagonists by using cultured cells that express TR. Fourteen of these compounds were found to antagonize the effect of T3 on TR with IC50s ranging from 1.5 to 30 μM. A small virtual library of compounds, derived from the highest affinity antagonist (1-850) that could be rapidly synthesized, was generated. A second round of virtual screening identified new compounds with predicted increased antagonist activity. These second generation compounds were synthesized, and their ability to act as TR antagonists was confirmed by transfection and receptor binding experiments. The extreme structural diversity of the antagonist compounds shows how receptor-based virtual screening can identify diverse chemistries that comply with the structural rules of TR antagonism.


Oncogene | 2002

RAR agonists stimulate SOX9 gene expression in breast cancer cell lines: evidence for a role in retinoid-mediated growth inhibition

Olubunmi Afonja; Bruce M. Raaka; Ambrose J. Huang; Sharmistha Das; Xinyu Zhao; Elizabeth Helmer; Dominique Juste; Herbert H. Samuels

Retinoic acid receptors (RARs) are ligand-dependent transcription factors which are members of the steroid/thyroid hormone receptor gene family. RAR-agonists inhibit the proliferation of many human breast cancer cell lines, particularly those whose growth is stimulated by estradiol (E2) or growth factors. PCR-amplified subtractive hybridization was used to identify candidate retinoid-regulated genes that may be involved in growth inhibition. One candidate gene identified was SOX9, a member of the high mobility group (HMG) box gene family of transcription factors. SOX9 gene expression is rapidly stimulated by RAR-agonists in T-47D cells and other retinoid-inhibited breast cancer cell lines. In support of this finding, a database search indicates that SOX9 is expressed as an EST in breast tumor cells. SOX9 is known to be expressed in chondrocytes where it regulates the transcription of type II collagen and in testes where it plays a role in male sexual differentiation. RAR pan-agonists and the RARα-selective agonist Am580, but not RXR agonists, stimulate the expression of SOX9 in a wide variety of retinoid-inhibited breast cancer cell lines. RAR-agonists did not stimulate SOX9 in breast cancer cell lines which were not growth inhibited by retinoids. Expression of SOX9 in T-47D cells leads to cycle changes similar to those found with RAR-agonists while expression of a dominant negative form of SOX9 blocks RA-mediated cell cycle changes, suggesting a role for SOX9 in retinoid-mediated growth inhibition.


Molecular and Cellular Biology | 2004

The Nuclear Hormone Receptor Coactivator NRC Is a Pleiotropic Modulator Affecting Growth, Development, Apoptosis, Reproduction, and Wound Repair

Muktar A. Mahajan; Sharmistha Das; Hong Zhu; Marjana Tomic-Canic; Herbert H. Samuels

ABSTRACT Nuclear hormone receptor coregulator (NRC) is a 2,063-amino-acid coregulator of nuclear hormone receptors and other transcription factors (e.g., c-Fos, c-Jun, and NF-κB). We and others have generated C57BL/6-129S6 hybrid (C57/129) NRC+/− mice that appear outwardly normal and grow and reproduce. In contrast, homozygous deletion of the NRC gene is embryonic lethal. NRC−/− embryos are always smaller than NRC+/+ embryos, and NRC−/− embryos die between 8.5 and 12.5 days postcoitus (dpc), suggesting that NRC has a pleotrophic effect on growth. To study this, we derived mouse embryonic fibroblasts (MEFs) from 12.5-dpc embryos, which revealed that NRC−/− MEFs exhibit a high rate of apoptosis. Furthermore, a small interfering RNA that targets mouse NRC leads to enhanced apoptosis of wild-type MEFs. The finding that C57/129 NRC+/− mice exhibit no apparent phenotype prompted us to develop 129S6 NRC+/− mice, since the phenotype(s) of certain gene deletions may be strain dependent. In contrast with C57/129 NRC+/− females, 20% of 129S6 NRC+/− females are infertile while 80% are hypofertile. The 129S6 NRC+/− males produce offspring when crossed with wild-type 129S6 females, although fertility is reduced. The 129S6 NRC+/− mice tend to be stunted in their growth compared with their wild-type littermates and exhibit increased postnatal mortality. Lastly, both C57/129 NRC+/− and 129S6 NRC+/− mice exhibit a spontaneous wound healing defect, indicating that NRC plays an important role in that process. Our findings reveal that NRC is a coregulator that controls many cellular and physiologic processes ranging from growth and development to reproduction and wound repair.


Journal of Biological Chemistry | 2010

Farnesyl Pyrophosphate Inhibits Epithelialization and Wound Healing through the Glucocorticoid Receptor

Sasa Vukelic; Olivera Stojadinovic; Irena Pastar; Constantinos Vouthounis; Agata Krzyzanowska; Sharmistha Das; Herbert H. Samuels; Marjana Tomic-Canic

Farnesyl pyrophosphate (FPP), a key intermediate in the mevalonate pathway and protein farnesylation, can act as an agonist for several nuclear hormone receptors. Here we show a novel mechanism by which FPP inhibits wound healing acting as an agonist for glucocorticoid receptor (GR). Elevation of endogenous FPP by the squalene synthetase inhibitor zaragozic acid A (ZGA) or addition of FPP to the cell culture medium results in activation and nuclear translocation of the GR, a known wound healing inhibitor. We used functional studies to evaluate the effects of FPP on wound healing. Both FPP and ZGA inhibited keratinocyte migration and epithelialization in vitro and ex vivo. These effects were independent of farnesylation and indicate that modulation of FPP levels in skin may be beneficial for wound healing. FPP inhibition of keratinocyte migration and wound healing proceeds, in part, by repression of the keratin 6 gene. Furthermore, we show that the 3-hydroxy-3-methylglutaryl-CoA-reductase inhibitor mevastatin, which blocks FPP formation, not only promotes epithelialization in acute wounds but also reverses the effect of ZGA on activation of the GR and inhibition of epithelialization. We conclude that FPP inhibits wound healing by acting as a GR agonist. Of special interest is that FPP is naturally present in cells prior to glucocorticoid synthesis and that FPP levels can be further altered by the statins. Therefore, our findings may provide a better understanding of the pleiotropic effects of statins as well as molecular mechanisms by which they may accelerate wound healing.


Molecular and Cellular Biology | 2004

The NRIF3 Family of Transcriptional Coregulators Induces Rapid and Profound Apoptosis in Breast Cancer Cells

Dangsheng Li; Sharmistha Das; Tatsuya Yamada; Herbert H. Samuels

ABSTRACT Many anticancer drugs kill cancer cells by inducing apoptosis. Despite the progress in understanding apoptosis, how to harness the cellular death machinery to selectively deliver tumor-specific cytotoxicity (while minimizing damage to other cells) remains an important challenge. We report here that expression of the NRIF3 family of transcriptional coregulators in a variety of breast cancer cell lines induces rapid and profound apoptosis (nearly 100% cell death within 24 h). A novel death domain (DD1) was mapped to a short 30-amino-acid region common to all members of the NRIF3 family. Mechanistic studies showed that DD1-induced apoptosis occurs through a novel caspase 2-mediated pathway that involves mitochondrial membrane permeabilization but does not require other caspases. Interestingly, the cytotoxicity of NRIF3 and DD1 appears to be cell type specific, as they selectively kill breast cancer or related cells but not other examined cells of different origins. Our study demonstrates the feasibility of selectively inducing cytotoxicity in a specific cancer and suggests that breast cancer cells contain a novel “death switch” that can be specifically triggered by NRIF3 or DD1. Strategies utilizing NRIF3 and/or DD1 and/or targeting this death switch may lead to the development of novel and more selective therapeutics against breast cancer.


Molecular and Cellular Biology | 2011

A Novel Transcription Complex That Selectively Modulates Apoptosis of Breast Cancer Cells through Regulation of FASTKD2

Sharmistha Das; Jin Zhang; Alejandro Lomniczi; Sergio R. Ojeda; Chong Feng Xu; Thomas A. Neubert; Herbert H. Samuels

ABSTRACT We previously reported that expression of NRIF3 (nuclear receptor interacting factor-3) rapidly and selectively leads to apoptosis of breast cancer cells. DIF-1 (also known as interferon regulatory factor-2 binding protein 2 [IRF-2BP2]), the cellular target of NRIF3, was identified as a transcriptional repressor, and DIF-1 knockdown leads to apoptosis of breast cancer cells but not other cell types. Here, we identify IRF-2BP1 and EAP1 (enhanced at puberty 1) as important components of the DIF-1 complex mediating both complex stability and transcriptional repression. This interaction of DIF-1, IRF-2BP1, and EAP1 occurs through the conserved C4 zinc fingers of these proteins. Microarray studies were carried out in breast cancer cell lines engineered to conditionally and rapidly increase the levels of the death domain (DD1) region of NRIF3. The DIF-1 complex was found to repress FASTKD2, a putative proapoptotic gene, in breast cancer cells and to bind to the FASTKD2 gene by chromatin immunoprecipitation. FASTKD2 knockdown prevents apoptosis of breast cancer cells from NRIF3 expression or DIF-1 knockdown, while expression of FASTKD2 leads to apoptosis of both breast and nonbreast cancer cells. Thus, regulation of FASTKD2 by NRIF3 and the DIF-1 complex acts as a novel death switch that selectively modulates apoptosis in breast cancer.


Oncogene | 2003

PSF-TFE3 oncoprotein in papillary renal cell carcinoma inactivates TFE3 and p53 through cytoplasmic sequestration.

Mukul Mathur; Sharmistha Das; Herbert H. Samuels

Papillary renal cell carcinomas are associated with chromosomal translocations involving the helix–loop–helix leucine-zipper region of the TFE3 gene on the X chromosome. These translocations lead to the expression of TFE3 chimeras of PRCC, RCC17, NonO and PSF (PTB-associated splicing factor). In this study, we explored the role of PSF-TFE3 fusion protein in mediating cell transformation. Unlike wild-type TFE3 or PSF, which are nuclear proteins, PSF-TFE3 is not a nuclear protein and is targeted to the endosomal compartment. Although PSF-TFE3 has no effect on the nuclear localization of wild-type PSF, it sequesters wild-type TFE3 as well as p53 in the extranuclear compartment leading to functionally null p53 and TFE3 cells. In UOK-145 papillary renal carcinoma cells, which endogenously express PSF-TFE3, siRNA complementary to the PSF-TFE3 fusion junction leads to a reduction in PSF-TFE3 and redistribution of endogenous TFE3 and p53 from the cytoplasmic compartment to the nucleus. Our results indicate that PSF-TFE3 acts through a novel mechanism, and exports TFE3, p53 and possibly other factors from the nucleus to the cytoplasm for degradation leading to the transformed phenotype. Thus, PSF-TFE3 is a promising target for the treatment for a subset of renal cell carcinomas.


BMC Cancer | 2014

Fas Activated Serine-Threonine Kinase Domains 2 (FASTKD2) mediates apoptosis of breast and prostate cancer cells through its novel FAST2 domain

Sharmistha Das; Muktar A. Mahajan; Herbert H. Samuels

BackgroundExpression of NRIF3 (Nuclear Receptor Interacting Factor-3) rapidly and selectively leads to apoptosis of breast cancer cells. This occurs through binding of NRIF3 or its 30 amino acid Death Domain-1 (DD1) region to the transcriptional repressor, DIF-1 (DD1 Interacting Factor-1). DIF-1 acts in a wide variety of breast cancer cells but not other cell types to repress the pro-apoptotic gene, FASTKD2. Expression of NRIF3 or DD1 inactivates the DIF-1 repressor leading to rapid derepression of FASTKD2, which initiates apoptosis within 5–8 h of expression. Although FASTKD2 is an inner mitochondrial membrane protein, it does not require mitochondrial localization to initiate apoptosis.MethodsAndrogen dependent LNCaP cells as well as two androgen independent LNCaP cell lines (LNCaP-AI and LNCaP-abl) were studied and LNCaP-AI cells were engineered to conditionally express DD1 or the inactive DD1-S28A with 4-hydroxytamoxifen. Apoptosis was assessed by TUNEL assay. FASTKD2 is related to 4 other proteins encoded in the human genome (FASTKD1, 3, 4, 5). All contain a poorly conserved putative bipartite kinase domain designated as FAST1_FAST2. We examined whether expression of any of the other FASTKD isoforms leads to apoptosis and sought to identify the region of FASTKD2 necessary to initiate the apoptotic pathway.ResultsOf the FASTKD1-5 isoforms only expression of FASTKD2 leads to apoptosis. Although, the NRIF3/DD1/DIF-1 pathway does not mediate apoptosis of a wide variety of non-breast cancer cell lines, because of certain similarities and gene signatures between breast and prostate cancer we explored whether the NRIF3/DD1/DIF-1/FASTKD2 pathway mediates apoptosis of prostate cancer cells. We found that the pathway leads to apoptosis in LNCaP cells, including the two androgen-independent LNCaP cell lines that are generally resistant to apoptosis. Lastly, we identified that FASTKD2-mediated apoptosis is initiated by the 81 amino acid FAST2 region.ConclusionsThe NRIF3/DIF-1/FASTKD2 pathway acts as a “death switch” in breast and prostate cancer cells. Deciphering how this pathway is regulated and how FASTKD2 initiates the apoptotic response will allow for the development of therapeutic agents for the treatment of androgen-independent prostate cancer or Tamoxifen-unresponsive Estrogen Receptor negative tumors as well as metastatic breast or prostate cancer.


Protein Engineering Design & Selection | 2010

Nuclear receptor engineering based on novel structure activity relationships revealed by farnesyl pyrophosphate

Ritu Goyanka; Sharmistha Das; Herbert H. Samuels; Timothy Cardozo

Nuclear receptors (NRs) comprise the second largest protein family targeted by currently available drugs, acting via specific ligand interactions within the ligand binding domain (LBD). Recently, farnesyl pyrophosphate (FPP) was shown to be a unique promiscuous NR ligand, activating a subset of NR family members and inhibiting wound healing in skin. The current study aimed at visualizing the unique basis of FPP interaction with multiple receptors in order to identify general structure-activity relationships that operate across the NR family. Docking of FPP to the 3D structures of the LBDs of a diverse set of NRs consistently revealed an electrostatic FPP pyrophosphate contact with an NR arginine conserved in the NR family, a hydrophobic farnesyl contact with NR helix-12 and a ligand binding pocket volume between 300 and 430 Å(3) as the minimal requirements for FPP activation of any NR. Lack of any of these structural features appears to render a given NR resistant to FPP activation. We used these structure-activity relationships to rationally design and successfully engineer several mutant human estrogen receptors that retain responsiveness to estradiol but no longer respond to FPP.

Collaboration


Dive into the Sharmistha Das's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alejandro Lomniczi

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Bruce M. Raaka

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergio R. Ojeda

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge