Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharmistha Sinha is active.

Publication


Featured researches published by Sharmistha Sinha.


Journal of the American Chemical Society | 2011

Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins

Sharmistha Sinha; Dahabada H. J. Lopes; Zhenming Du; Eric Pang; Akila Shanmugam; Aleksey Lomakin; Peter Talbiersky; Annette Tennstaedt; Kirsten McDaniel; Reena Bakshi; Pei-Yi Kuo; Michael Ehrmann; George B. Benedek; Joseph A. Loo; Frank-Gerrit Klärner; Thomas Schrader; Chunyu Wang; Gal Bitan

Amyloidoses are diseases characterized by abnormal protein folding and self-assembly, for which no cure is available. Inhibition or modulation of abnormal protein self-assembly, therefore, is an attractive strategy for prevention and treatment of amyloidoses. We examined Lys-specific molecular tweezers and discovered a lead compound termed CLR01, which is capable of inhibiting the aggregation and toxicity of multiple amyloidogenic proteins by binding to Lys residues and disrupting hydrophobic and electrostatic interactions important for nucleation, oligomerization, and fibril elongation. Importantly, CLR01 shows no toxicity at concentrations substantially higher than those needed for inhibition. We used amyloid β-protein (Aβ) to further explore the binding site(s) of CLR01 and the impact of its binding on the assembly process. Mass spectrometry and solution-state NMR demonstrated binding of CLR01 to the Lys residues in Aβ at the earliest stages of assembly. The resulting complexes were indistinguishable in size and morphology from Aβ oligomers but were nontoxic and were not recognized by the oligomer-specific antibody A11. Thus, CLR01 binds already at the monomer stage and modulates the assembly reaction into formation of nontoxic structures. The data suggest that molecular tweezers are unique, process-specific inhibitors of aberrant protein aggregation and toxicity, which hold promise for developing disease-modifying therapy for amyloidoses.


Microbiology and Molecular Biology Reviews | 2014

Diverse Bacterial Microcompartment Organelles

Chiranjit Chowdhury; Sharmistha Sinha; Sunny Chun; Todd O. Yeates; Thomas A. Bobik

SUMMARY Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Interactions between the termini of lumen enzymes and shell proteins mediate enzyme encapsulation into bacterial microcompartments.

Chenguang Fan; Shouqiang Cheng; Sharmistha Sinha; Thomas A. Bobik

Bacterial microcompartments (MCPs) are a widespread family of proteinaceous organelles that consist of metabolic enzymes encapsulated within a protein shell. For MCPs to function specific enzymes must be encapsulated. We recently reported that a short N-terminal targeting sequence of propionaldehyde dehydrogenase (PduP) is necessary and sufficient for the packaging of enzymes into a MCP that functions in 1,2-propanediol (1,2-PD) utilization (Pdu) by Salmonella enterica. Here we show that encapsulation is mediated by binding of the PduP targeting sequence to a short C-terminal helix of the PduA shell protein. In vitro studies indicated binding between PduP and PduA (and PduJ) but not other MCP shell proteins. Alanine scanning mutagenesis determined that the key residues involved in binding are E7, I10, and L14 of PduP and H81, V84, and L88 of PduA. In vivo targeting studies indicated that the binding between the N terminus of PduP and the C terminus of PduA is critical for encapsulation of PduP within the Pdu MCP. Structural models suggest that the N terminus of PduP and C terminus of PduA both form helical structures that bind one another via the key residues identified by mutagenesis. Cumulatively, these results show that the N-terminal targeting sequence of PduP promotes its encapsulation by binding to MCP shell proteins. This is a unique report determining the mechanism by which a MCP targeting sequence functions. We propose that specific interactions between the termini of shell proteins and lumen enzymes have general importance for guiding the assembly and the higher level organization of bacterial MCPs.


Neurotherapeutics | 2012

A Novel “Molecular Tweezer” Inhibitor of α-Synuclein Neurotoxicity in Vitro and in Vivo

Shubhangi Prabhudesai; Sharmistha Sinha; Aida Attar; Aswani Kotagiri; Arthur G. Fitzmaurice; Ravi Lakshmanan; Magdalena I. Ivanova; Joseph A. Loo; Frank Gerrit Klärner; Thomas Schrader; Mark Stahl; Gal Bitan; Jeff M. Bronstein

SummaryAggregation of α-synuclein (α-syn) is implicated as being causative in the pathogenesis of Parkinson’s disease, multiple system atrophy, and dementia with Lewy bodies. Despite several therapies that improve symptoms in these disorders, none slow disease progression. Recently, a novel “molecular tweezer” (MT) termed CLR01 has been described as a potent inhibitor of assembly and toxicity of multiple amyloidogenic proteins. Here we investigated the ability of CLR01 to inhibit assembly and toxicity of α-syn. In vitro, CLR01 inhibited the assembly of α-syn into β-sheet-rich fibrils and caused disaggregation of pre-formed fibrils, as determined by thioflavin T fluorescence and electron microscopy. α-Syn toxicity was studied in cell cultures and was completely mitigated by CLR01 when α-syn was expressed endogenously or added exogenously. To determine if CLR01 was also protective in vivo, we used a novel zebrafish model of α-syn toxicity (α-syn-ZF), which expresses human, wild-type α-syn in neurons. α-Syn-ZF embryos developed severe deformities due to neuronal apoptosis and most of them died within 48 to 72xa0h. CLR01 added to the water significantly improved zebrafish phenotype and survival, suppressed α-syn aggregation in neurons, and reduced α-syn-induced apoptosis. α-Syn expression was found to inhibit the ubiquitin proteasome system in α-syn-ZF neurons, resulting in further accumulation of α-syn. Treatment with CLR01 almost completely mitigated the proteasome inhibition. The data suggest that CLR01 is a promising therapeutic agent for the treatment of Parkinson’s disease and other synucleinopathies.


ACS Chemical Neuroscience | 2012

Comparison of Three Amyloid Assembly Inhibitors: The Sugar scyllo- Inositol, the Polyphenol Epigallocatechin Gallate, and the Molecular Tweezer CLR01

Sharmistha Sinha; Zhenming Du; Panchanan Maiti; Frank-Gerrit Klärner; Thomas Schrader; Chunyu Wang; Gal Bitan

Many compounds have been tested as inhibitors or modulators of amyloid β-protein (Aβ) assembly in hope that they would lead to effective, disease-modifying therapy for Alzheimers disease (AD). These compounds typically were either designed to break apart β-sheets or selected empirically. Two such compounds, the natural inositol derivative scyllo-inositol and the green-tea-derived flavonoid epigallocatechin gallate (EGCG), currently are in clinical trials. Similar to most of the compounds tested thus far, the mechanism of action of scyllo-inositol and EGCG is not understood. Recently, we discovered a novel family of assembly modulators, Lys-specific molecular tweezers, which act by binding specifically to Lys residues and modulate the self-assembly of amyloid proteins, including Aβ, into formation of nontoxic oligomers by a process-specific mechanism (Sinha, S., Lopes, D. H., Du, Z., Pang, E. S., Shanmugam, A., Lomakin, A., Talbiersky, P., Tennstaedt, A., McDaniel, K., Bakshi, R., Kuo, P. Y., Ehrmann, M., Benedek, G. B., Loo, J. A., Klarner, F. G., Schrader, T., Wang, C., and Bitan, G. (2011) Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins. J. Am. Chem. Soc.133, 16958-16969). Here, we compared side-by-side the capability of scyllo-inositol, EGCG, and the molecular tweezer CLR01 to inhibit Aβ aggregation and toxicity. We found that EGCG and CLR01 had comparable activity whereas scyllo-inositol was a weaker inhibitor. Exploration of the binding of EGCG and CLR01 to Aβ using heteronuclear solution-state NMR showed that whereas CLR01 bound to the two Lys and single Arg residues in Aβ monomers, only weak, nonspecific binding was detected for EGCG, leaving the binding mode of the latter unresolved.


ACS Chemical Neuroscience | 2012

A key role for lysine residues in amyloid β-protein folding, assembly, and toxicity.

Sharmistha Sinha; Dahabada H. J. Lopes; Gal Bitan

A combination of hydrophobic and electrostatic interactions is important in initiating the aberrant self-assembly process that leads to formation of toxic oligomers and aggregates by multiple disease-related proteins, including amyloid β-protein (Aβ), whose self-assembly is believed to initiate brain pathogenesis in Alzheimers disease. Lys residues play key roles in this process and participate in both types of interaction. They also are the target of our recently reported molecular tweezer inhibitors. To obtain further insight into the role of the two Lys residues in Aβ assembly and toxicity, here we substituted each by Ala in both Aβ40 and Aβ42 and studied the impact of the substitution on Aβ oligomerization, aggregation, and toxicity. Our data show that each substitution has a major impact on Aβ assembly and toxicity, with significant differences depending on peptide length (40 versus 42 amino acids) and the position of the substitution. In particular, Lys16→Ala substitution dramatically reduces Aβ toxicity. The data support the use of compounds targeting Lys residues specifically as inhibitors of Aβ toxicity and suggest that exploring the role of Lys residues in other disease-related amyloidogenic proteins may help understanding the mechanisms of aggregation and toxicity of these proteins.


Journal of Bacteriology | 2011

Genetic Analysis of the Protein Shell of the Microcompartments Involved in Coenzyme B12-Dependent 1,2-Propanediol Degradation by Salmonella

Shouqiang Cheng; Sharmistha Sinha; Chenguang Fan; Yu Liu; Thomas A. Bobik

Hundreds of bacterial species use microcompartments (MCPs) to optimize metabolic pathways that have toxic or volatile intermediates. MCPs consist of a protein shell encapsulating specific metabolic enzymes. In Salmonella, an MCP is used for 1,2-propanediol utilization (Pdu MCP). The shell of this MCP is composed of eight different types of polypeptides, but their specific functions are uncertain. Here, we individually deleted the eight genes encoding the shell proteins of the Pdu MCP. The effects of each mutation on 1,2-PD degradation and MCP structure were determined by electron microscopy and growth studies. Deletion of the pduBB, pduJ, or pduN gene severely impaired MCP formation, and the observed defects were consistent with roles as facet, edge, or vertex protein, respectively. Metabolite measurements showed that pduA, pduBB, pduJ, or pduN deletion mutants accumulated propionaldehyde to toxic levels during 1,2-PD catabolism, indicating that the integrity of the shell was disrupted. Deletion of the pduK, pduT, or pduU gene did not substantially affect MCP structure or propionaldehyde accumulation, suggesting they are nonessential to MCP formation. However, the pduU or pduT deletion mutants grew more slowly than the wild type on 1,2-PD at saturating B(12), indicating that they are needed for maximal activity of the 1,2-PD degradative enzymes encased within the MCP shell. Considering recent crystallography studies, this suggests that PduT and PduU may mediate the transport of enzyme substrates/cofactors across the MCP shell. Interestingly, a pduK deletion caused MCP aggregation, suggesting a role in the spatial organization of MCP within the cytoplasm or perhaps in segregation at cell division.


PLOS ONE | 2012

The PduQ enzyme is an alcohol dehydrogenase used to recycle NAD+ internally within the Pdu microcompartment of Salmonella enterica.

Shouqiang Cheng; Chenguang Fan; Sharmistha Sinha; Thomas A. Bobik

Salmonella enterica uses a bacterial microcompartment (MCP) for coenzyme B12-dependent 1,2-propanediol (1,2-PD) utilization (Pdu). The Pdu MCP consists of a protein shell that encapsulates enzymes and cofactors required for metabolizing 1,2-PD as a carbon and energy source. Here we show that the PduQ protein of S. enterica is an iron-dependent alcohol dehydrogenase used for 1,2-PD catabolism. PduQ is also demonstrated to be a new component of the Pdu MCP. In addition, a series of in vivo and in vitro studies show that a primary function of PduQ is to recycle NADH to NAD+ internally within the Pdu MCP in order to supply propionaldehyde dehydrogenase (PduP) with its required cofactor (NAD+). Genetic tests determined that a pduQ deletion mutant grew slower than wild-type Salmonella on 1,2-PD and that this phenotype was not complemented by a non-MCP associated Adh2 from Zymomonas that catalyzes the same reaction. This suggests that PduQ has a MCP-specific function. We also found that a pduQ deletion mutant had no growth defect in a genetic background having a second mutation that prevents MCP formation which further supports a MCP-specific role for PduQ. Moreover, studies with purified Pdu MCPs demonstrated that the PduQ enzyme can convert NADH to NAD+ to supply the PduP reaction in vitro. Cumulatively, these studies show that the PduQ enzyme is used to recycle NADH to NAD+ internally within the Pdu MCP. To our knowledge, this is the first report of internal recycling as a mechanism for cofactor homeostasis within a bacterial MCP.


Journal of the American Chemical Society | 2011

Rational design of β-sheet ligands against Aβ42-induced toxicity.

Katrin Hochdörffer; Julia März-Berberich; Luitgard Nagel-Steger; Matthias Epple; Wolfgang Meyer-Zaika; Anselm H. C. Horn; Heinrich Sticht; Sharmistha Sinha; Gal Bitan; Thomas Schrader

A β-sheet-binding scaffold was equipped with long-range chemical groups for tertiary contacts toward specific regions of the Alzheimers Aβ fibril. The new constructs contain a trimeric aminopyrazole carboxylic acid, elongated with a C-terminal binding site, whose influence on the aggregation behavior of the Aβ(42) peptide was studied. MD simulations after trimer docking to the anchor point (F19/F20) suggest distinct groups of complex structures each of which featured additional specific interactions with characteristic Aβ regions. Members of each group also displayed a characteristic pattern in their antiaggregational behavior toward Aβ. Specifically, remote lipophilic moieties such as a dodecyl, cyclohexyl, or LPFFD fragment can form dispersive interactions with the nonpolar cluster of amino acids between I31 and V36. They were shown to strongly reduce Thioflavine T (ThT) fluorescence and protect cells from Aβ lesions (MTT viability assays). Surprisingly, very thick fibrils and a high β-sheet content were detected in transmission electron microscopy (TEM) and CD spectroscopic experiments. On the other hand, distant single or multiple lysines which interact with the ladder of stacked E22 residues found in Aβ fibrils completely dissolve existing β-sheets (ThT, CD) and lead to unstructured, nontoxic material (TEM, MTT). Finally, the triethyleneglycol spacer between heterocyclic β-sheet ligand and appendix was found to play an active role in destabilizing the turn of the U-shaped protofilament. Fluorescence correlation spectroscopy (FCS) and sedimentation velocity analysis (SVA) provided experimental evidence for some smaller benign aggregates of very thin, delicate structure (TEM, MTT). A detailed investigation by dynamic light scattering (DLS) and other methods proved that none of the new ligands acts as a colloid. The evolving picture for the disaggregation mechanism by these new hybrid ligands implies transformation of well-ordered fibrils into less structured aggregates with a high molecular weight. In the few cases where fibrillar components remain, these display a significantly altered morphology and have lost their acute cellular toxicity.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Selective molecular transport through the protein shell of a bacterial microcompartment organelle

Chiranjit Chowdhury; Sunny Chun; Allan Pang; Michael R. Sawaya; Sharmistha Sinha; Todd O. Yeates; Thomas A. Bobik

Significance Here, we describe a type of selective channel formed by a nonmembrane protein that is used to control metabolite movement between cellular compartments. In this case, the channel controls the movement of metabolites between the bacterial cytoplasm and the lumen of a bacterial microcompartment, a primitive organelle that is bounded by a protein shell and lacks any lipid bilayer. These studies are the first to our knowledge to prove selective molecular transport through a protein-based barrier. These findings broaden our understanding of how cells control the movement of molecules between cellular compartments, which is fundamental to biological systems. It also solves a key question about the function of bacterial microcompartments, which themselves impact many diverse and important biological processes. Bacterial microcompartments are widespread prokaryotic organelles that have important and diverse roles ranging from carbon fixation to enteric pathogenesis. Current models for microcompartment function propose that their outer protein shell is selectively permeable to small molecules, but whether a protein shell can mediate selective permeability and how this occurs are unresolved questions. Here, biochemical and physiological studies of structure-guided mutants are used to show that the hexameric PduA shell protein of the 1,2-propanediol utilization (Pdu) microcompartment forms a selectively permeable pore tailored for the influx of 1,2-propanediol (the substrate of the Pdu microcompartment) while restricting the efflux of propionaldehyde, a toxic intermediate of 1,2-propanediol catabolism. Crystal structures of various PduA mutants provide a foundation for interpreting the observed biochemical and phenotypic data in terms of molecular diffusion across the shell. Overall, these studies provide a basis for understanding a class of selectively permeable channels formed by nonmembrane proteins.

Collaboration


Dive into the Sharmistha Sinha's collaboration.

Top Co-Authors

Avatar

Gal Bitan

University of California

View shared research outputs
Top Co-Authors

Avatar

Thomas Schrader

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aida Attar

University of California

View shared research outputs
Top Co-Authors

Avatar

Peter Talbiersky

University of Duisburg-Essen

View shared research outputs
Researchain Logo
Decentralizing Knowledge