Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharon A. McGrath-Morrow is active.

Publication


Featured researches published by Sharon A. McGrath-Morrow.


American Journal of Respiratory and Critical Care Medicine | 2008

Neonatal Hyperoxia Enhances the Inflammatory Response in Adult Mice Infected with Influenza A Virus

Michael A. O'Reilly; Shauna H. Marr; Min Yee; Sharon A. McGrath-Morrow; B. Paige Lawrence

RATIONALE Lungs of adult mice exposed to hyperoxia as newborns are simplified and exhibit reduced function much like that observed in people who had bronchopulmonary dysplasia (BPD) as infants. Because survivors of BPD also show increased risk for symptomatic respiratory infections, we investigated how neonatal hyperoxia affected the response of adult mice infected with influenza A virus infection. OBJECTIVES To determine whether neonatal hyperoxia increased the severity of influenza A virus infection in adult mice. METHODS Adult female mice exposed to room air or hyperoxia between Postnatal Days 1 and 4 were infected with a sublethal dose of influenza A virus. MEASUREMENTS AND MAIN RESULTS The number of macrophages, neutrophils, and lymphocytes observed in airways of infected mice that had been exposed to hyperoxia as neonates was significantly greater than in infected siblings that had been exposed to room air. Enhanced inflammation correlated with increased levels of monocyte chemotactic protein-1 (CCL2) in lavage fluid, whereas infection-associated changes in IFN-gamma, IL-1beta, IL-6, tumor necrosis factor-alpha, KC, granulocyte-macrophage colony-stimulating factor, and macrophage inflammatory protein-1alpha, and production of virus-specific antibodies, were largely unaffected. Increased mortality of mice exposed to neonatal hyperoxia occurred by Day 14 of infection, and was associated with persistent inflammation and fibrosis. CONCLUSIONS These data suggest that the disruptive effect of hyperoxia on neonatal lung development also reprograms key innate immunoregulatory pathways in the lung, which may contribute to exacerbated pathology and poorer resistance to respiratory viral infections typically seen in people who had BPD.


Journal of Clinical Investigation | 2012

Angiotensin receptor blockade attenuates cigarette smoke–induced lung injury and rescues lung architecture in mice

Megan Podowski; Carla Calvi; Shana Metzger; Kaori Misono; Hataya K. Poonyagariyagorn; Armando Lopez-Mercado; Therese Ku; Thomas Lauer; Sharon A. McGrath-Morrow; Alan E. Berger; Christopher Cheadle; Rubin M. Tuder; Harry C. Dietz; Wayne Mitzner; Robert A. Wise; Enid Neptune

Chronic obstructive pulmonary disease (COPD) is a prevalent smoking-related disease for which no disease-altering therapies currently exist. As dysregulated TGF-β signaling associates with lung pathology in patients with COPD and in animal models of lung injury induced by chronic exposure to cigarette smoke (CS), we postulated that inhibiting TGF-β signaling would protect against CS-induced lung injury. We first confirmed that TGF-β signaling was induced in the lungs of mice chronically exposed to CS as well as in COPD patient samples. Importantly, key pathological features of smoking-associated lung disease in patients, e.g., alveolar injury with overt emphysema and airway epithelial hyperplasia with fibrosis, accompanied CS-induced alveolar cell apoptosis caused by enhanced TGF-β signaling in CS-exposed mice. Systemic administration of a TGF-β-specific neutralizing antibody normalized TGF-β signaling and alveolar cell death, conferring improved lung architecture and lung mechanics in CS-exposed mice. Use of losartan, an angiotensin receptor type 1 blocker used widely in the clinic and known to antagonize TGF-β signaling, also improved oxidative stress, inflammation, metalloprotease activation and elastin remodeling. These data support our hypothesis that inhibition of TGF-β signaling through angiotensin receptor blockade can attenuate CS-induced lung injury in an established murine model. More importantly, our findings provide a preclinical platform for the development of other TGF-β-targeted therapies for patients with COPD.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Neonatal oxygen adversely affects lung function in adult mice without altering surfactant composition or activity

Min Yee; Patricia R. Chess; Sharon A. McGrath-Morrow; Zhengdong Wang; Robert Gelein; Rui Zhou; David A. Dean; Robert H. Notter; Michael A. O'Reilly

Despite its potentially adverse effects on lung development and function, supplemental oxygen is often used to treat premature infants in respiratory distress. To understand how neonatal hyperoxia can permanently disrupt lung development, we previously reported increased lung compliance, greater alveolar simplification, and disrupted epithelial development in adult mice exposed to 100% inspired oxygen fraction between postnatal days 1 and 4. Here, we investigate whether oxygen-induced changes in lung function are attributable to defects in surfactant composition and activity, structural changes in alveolar development, or both. Newborn mice were exposed to room air or 40%, 60%, 80%, or 100% oxygen between postnatal days 1 and 4 and allowed to recover in room air until 8 wk of age. Lung compliance and alveolar size increased, and airway resistance, airway elastance, tissue elastance, and tissue damping decreased, in mice exposed to 60-80% oxygen; changes were even greater in mice exposed to 100% oxygen. These alterations in lung function were not associated with changes in total protein content or surfactant phospholipid composition in bronchoalveolar lavage. Moreover, surface activity and total and hydrophobic protein content were unchanged in large surfactant aggregates centrifuged from bronchoalveolar lavage compared with control. Instead, the number of type II cells progressively declined in 60-100% oxygen, whereas levels of T1alpha, a protein expressed by type I cells, were comparably increased in mice exposed to 40-100% oxygen. Thickened bundles of elastin fibers were also detected in alveolar walls of mice exposed to > or = 60% oxygen. These findings support the hypothesis that changes in lung development, rather than surfactant activity, are the primary causes of oxygen-altered lung function in children who were exposed to oxygen as neonates. Furthermore, the disruptive effects of oxygen on epithelial development and lung mechanics are not equivalently dose dependent.


American Journal of Pathology | 2011

Neonatal Hyperoxia Causes Pulmonary Vascular Disease and Shortens Life Span in Aging Mice

Min Yee; R. James White; Hani A. Awad; Wendy Bates; Sharon A. McGrath-Morrow; Michael A. O'Reilly

Bronchopulmonary dysplasia is a chronic lung disease observed in premature infants requiring oxygen supplementation and ventilation. Although the use of exogenous surfactant and protective ventilation strategies has improved survival, the long-term pulmonary consequences of neonatal hyperoxia are unknown. Here, we investigate whether neonatal hyperoxia alters pulmonary function in aging mice. By 67 weeks of age, mice exposed to 100% oxygen between postnatal days 1 to 4 showed significantly a shortened life span (56.6% survival, n = 53) compared to siblings exposed to room air as neonates (100% survival, n = 47). Survivors had increased lung compliance and decreased elastance. There was also right ventricular hypertrophy and pathological evidence for pulmonary hypertension, defined by reduction of the distal microvasculature and the presence of numerous dilated arterioles expressing von Willebrand factor and α-smooth muscle actin. Consistent with recent literature implicating bone morphogenetic protein (BMP) signaling in pulmonary vascular disease, BMP receptors and downstream phospho-Smad1/5/8 were reduced in lungs of aging mice exposed to neonatal oxygen. BMP signaling alterations were not observed in 8-week-old mice. These data suggest that loss of BMP signaling in aged mice exposed to neonatal oxygen is associated with a shortened life span, pulmonary vascular disease, and associated cardiac failure. People exposed to hyperoxia as neonates may be at increased risk for pulmonary hypertension.


Seminars in Perinatology | 2013

Long-term pulmonary outcomes of patients with bronchopulmonary dysplasia

Anita Bhandari; Sharon A. McGrath-Morrow

Bronchopulmonary dysplasia (BPD) is the commonest cause of chronic lung disease in infancy. The incidence of BPD has remained unchanged despite many advances in neonatal care. BPD starts in the neonatal period but its effects can persist long term. Premature infants with BPD have a greater incidence of hospitalization, and continue to have a greater respiratory morbidity and need for respiratory medications, compared to those without BPD. Lung function abnormalites, especially small airway abnormalities, often persist. Even in the absence of clinical symptoms, BPD survivors have persistent radiological abnormalities and presence of emphysema has been reported on chest computed tomography scans. Concern regarding their exercise tolerance remains. Long-term effects of BPD are still unknown, but given reports of a more rapid decline in lung function and their suspectibility to develop chronic obstructive pulmonary disease phenotype with aging, it is imperative that lung function of survivors of BPD be closely monitored.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Nrf2 increases survival and attenuates alveolar growth inhibition in neonatal mice exposed to hyperoxia

Sharon A. McGrath-Morrow; Thomas Lauer; Min Yee; Enid Neptune; Megan Podowski; Rajesh K. Thimmulappa; Michael A. O'Reilly; Shyam Biswal

Increased oxidative stress is associated with perinatal asphyxia and respiratory distress in the newborn period. Induction of nuclear factor erythroid 2 p45-related factor (Nrf2) has been shown to decrease oxidative stress through the regulation of specific gene pathways. We hypothesized that Nrf2 attenuates mortality and alveolar growth inhibition in newborn mice exposed to hyperoxia. Nrf2(+/+) and Nrf2(-/-) newborn mice were exposed to hyperoxia at 24 h. Survival was significantly less in Nrf2(-/-) mice exposed to 72 h of hyperoxia and returned to room air (P < 0.0001) and in Nrf2(-/-) mice exposed to hyperoxia for 8 continuous days (P < 0.005). To determine the response of Nrf2 target genes to hyperoxia, glutathione peroxidase 2 (Gpx2) and NAD(P)H:quinone oxidoreductase (NQO1) expression was measured from lung of newborn mice using real-time PCR. In the Nrf2(+/+) mice, significant induction of lung Gpx2 and NQO1 above room air controls was found with hyperoxia. In contrast, Nrf2(-/-) mice had minimal induction of lung Gpx2 and NQO1 with hyperoxia. Expression of p21 and IL-6, genes not regulated by Nrf2, were also measured. IL-6 expression in Nrf2(-/-) lung was markedly induced by 72 h of hyperoxia in contrast to the Nrf2(+/+) mice. p21 was induced in both Nrf2(+/+) and Nrf2(-/-) lung by hyperoxia. Mean linear intercept (MLI) and mean chord length (MCL) were significantly increased in 14-day-old Nrf2(-/-) mice previously exposed to hyperoxia compared with Nrf2(+/+) mice. The percentage of surfactant protein C (Sp-c(+)) type 2 alveolar cells in 14-day-old Nrf2(-/-) mice exposed to neonatal hyperoxia was also significantly less than Nrf2(+/+) mice (P < 0.02). In summary, these findings indicate that Nrf2 increases survival in newborn mice exposed to hyperoxia and that Nrf2 may help attenuate alveolar growth inhibition caused by hyperoxia exposure.


PLOS ONE | 2015

The Effects of Electronic Cigarette Emissions on Systemic Cotinine Levels, Weight and Postnatal Lung Growth in Neonatal Mice

Sharon A. McGrath-Morrow; Madoka Hayashi; Angela Aherrera; Armando Lopez; Alla Malinina; Joseph M. Collaco; Enid Neptune; Jonathan D. Klein; Jonathan P. Winickoff; Patrick N. Breysse; Philip Lazarus; Gang Chen

Background/Objective Electronic cigarette (E-cigarettes) emissions present a potentially new hazard to neonates through inhalation, dermal and oral contact. Exposure to nicotine containing E-cigarettes may cause significant systemic absorption in neonates due to the potential for multi-route exposure. Systemic absorption of nicotine and constituents of E-cigarette emissions may adversely impact weight and lung development in the neonate. To address these questions we exposed neonatal mice to E-cigarette emissions and measured systemic cotinine levels and alveolar lung growth. Methods/Main Results Neonatal mice were exposed to E-cigarettes for the first 10 days of life. E-cigarette cartridges contained either 1.8% nicotine in propylene glycol (PG) or PG vehicle alone. Daily weights, plasma and urine cotinine levels and lung growth using the alveolar mean linear intercept (MLI) method were measured at 10 days of life and compared to room air controls. Mice exposed to 1.8% nicotine/PG had a 13.3% decrease in total body weight compared to room air controls. Plasma cotinine levels were found to be elevated in neonatal mice exposed to 1.8% nicotine/PG E-cigarettes (mean 62.34± 3.3 ng/ml). After adjusting for sex and weight, the nicotine exposed mice were found to have modestly impaired lung growth by MLI compared to room air control mice (p<.054 trial 1; p<.006 trial 2). These studies indicate that exposure to E-cigarette emissions during the neonatal period can adversely impact weight gain. In addition exposure to nicotine containing E-cigarettes can cause detectable levels of systemic cotinine, diminished alveolar cell proliferation and a modest impairment in postnatal lung growth.


Pediatric Pulmonology | 2010

Evaluation and management of pulmonary disease in ataxia‐telangiectasia

Sharon A. McGrath-Morrow; W. Adam Gower; Cynthia Rothblum-Oviatt; Alan S. Brody; Claire Langston; Leland L. Fan; Maureen A. Lefton-Greif; Thomas O. Crawford; Michelle S. Troche; John T. Sandlund; Paul G. Auwaerter; Blaine Easley; Gerald M. Loughlin; John L. Carroll; Howard M. Lederman

Ataxia‐telangiectasia (A‐T) is a rare autosomal recessive disorder caused by mutations in the ATM gene, resulting in faulty repair of breakages in double‐stranded DNA. The clinical phenotype is complex and is characterized by neurologic abnormalities, immunodeficiencies, susceptibility to malignancies, recurrent sinopulmonary infections, and cutaneous abnormalities. Lung disease is common in patients with A‐T and often progresses with age and neurological decline. Diseases of the respiratory system cause significant morbidity and are a frequent cause of death in the A‐T population. Lung disease in this population is thought to exhibit features of one or more of the following phenotypes: recurrent sinopulmonary infections with bronchiectasis, interstitial lung disease, and lung disease associated with neurological abnormalities. Here, we review available evidence and present expert opinion on the diagnosis, evaluation, and management of lung disease in A‐T, as discussed in a recent multidisciplinary workshop. Although more data are emerging on this unique population, many recommendations are made based on similarities to other more well‐studied diseases. Gaps in current knowledge and areas for future research in the field of pulmonary disease in A‐T are also outlined. Pediatr. Pulmonol. 2010; 45:847–859.


Orphanet Journal of Rare Diseases | 2016

Ataxia telangiectasia: a review

Cynthia Rothblum-Oviatt; Jennifer Wright; Maureen A. Lefton-Greif; Sharon A. McGrath-Morrow; Thomas O. Crawford; Howard M. Lederman

Definition of the diseaseAtaxia telangiectasia (A-T) is an autosomal recessive disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. A-T is often referred to as a genome instability or DNA damage response syndrome.EpidemiologyThe world-wide prevalence of A-T is estimated to be between 1 in 40,000 and 1 in 100,000 live births.Clinical descriptionA-T is a complex disorder with substantial variability in the severity of features between affected individuals, and at different ages. Neurological symptoms most often first appear in early childhood when children begin to sit or walk. They have immunological abnormalities including immunoglobulin and antibody deficiencies and lymphopenia. People with A-T have an increased predisposition for cancers, particularly of lymphoid origin. Pulmonary disease and problems with feeding, swallowing and nutrition are common, and there also may be dermatological and endocrine manifestations.EtiologyA-T is caused by mutations in the ATM (Ataxia Telangiectasia, Mutated) gene which encodes a protein of the same name. The primary role of the ATM protein is coordination of cellular signaling pathways in response to DNA double strand breaks, oxidative stress and other genotoxic stress.DiagnosisThe diagnosis of A-T is usually suspected by the combination of neurologic clinical features (ataxia, abnormal control of eye movement, and postural instability) with one or more of the following which may vary in their appearance: telangiectasia, frequent sinopulmonary infections and specific laboratory abnormalities (e.g. IgA deficiency, lymphopenia especially affecting T lymphocytes and increased alpha-fetoprotein levels). Because certain neurological features may arise later, a diagnosis of A-T should be carefully considered for any ataxic child with an otherwise elusive diagnosis. A diagnosis of A-T can be confirmed by the finding of an absence or deficiency of the ATM protein or its kinase activity in cultured cell lines, and/or identification of the pathological mutations in the ATM gene.Differential diagnosisThere are several other neurologic and rare disorders that physicians must consider when diagnosing A-T and that can be confused with A-T. Differentiation of these various disorders is often possible with clinical features and selected laboratory tests, including gene sequencing.Antenatal diagnosisAntenatal diagnosis can be performed if the pathological ATM mutations in that family have been identified in an affected child. In the absence of identifying mutations, antenatal diagnosis can be made by haplotype analysis if an unambiguous diagnosis of the affected child has been made through clinical and laboratory findings and/or ATM protein analysis.Genetic counselingGenetic counseling can help family members of a patient with A-T understand when genetic testing for A-T is feasible, and how the test results should be interpreted.Management and prognosisTreatment of the neurologic problems associated with A-T is symptomatic and supportive, as there are no treatments known to slow or stop the neurodegeneration. However, other manifestations of A-T, e.g. immunodeficiency, pulmonary disease, failure to thrive and diabetes can be treated effectively.


Pediatric Pulmonology | 2012

Frontiers in Pulmonary Hypertension in Infants and Children With Bronchopulmonary Dysplasia

Joseph M. Collaco; Lewis H. Romer; Bridget Stuart; John D. Coulson; Allen D. Everett; Edward E. Lawson; Joel I. Brenner; Anna Brown; Melanie K. Nies; Priya Sekar; Lawrence M. Nogee; Sharon A. McGrath-Morrow

Pulmonary hypertension (PH) is an increasingly recognized complication of premature birth and bronchopulmonary dysplasia (BPD), and is associated with increased morbidity and mortality. Extreme phenotypic variability exists among preterm infants of similar gestational ages, making it difficult to predict which infants are at increased risk for developing PH. Intrauterine growth retardation or drug exposures, postnatal therapy with prolonged positive pressure ventilation, cardiovascular shunts, poor postnatal lung and somatic growth, and genetic or epigenetic factors may all contribute to the development of PH in preterm infants with BPD. In addition to the variability of severity of PH, there is also qualitative variability seen in PH, such as the variable responses to vasoactive medications.

Collaboration


Dive into the Sharon A. McGrath-Morrow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enid Neptune

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Maureen A. Lefton-Greif

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Yee

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Sande O. Okelo

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge