Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharon A. Meyer is active.

Publication


Featured researches published by Sharon A. Meyer.


Journal of Nutrition | 1992

Intestinal calcium transport and calcium extrusion processes at the basolateral membrane

R. H. Wasserman; John S. Chandler; Sharon A. Meyer; Christiana A. Smith; Marie E. Brindak; Curtis S. Fullmer; John T. Penniston; Rajiv Kumar

The intestinal absorption of calcium has been proposed to occur by the transcellular transfer of Ca2+ through the enterocyte proper and between the cells of the intestinal epithelium, i.e., the paracellular path. Attention in this report is given to the transcellular models of Ca2+ absorption and, more specifically, the Ca2+ extrusion events occurring at the basolateral membrane. These extrusion processes include the operation of an ATP-dependent Ca2+ pump and a Na+/Ca2+ exchanger, as well as exocytosis as the terminal event in a proposed vesicular transport mechanism. Evidence for the presence of an ATP-dependent Ca2+ pump at the basolateral membrane is documented and illustrated with biochemical and immunological data from studies on the avian intestinal basolateral membrane. As shown immunohistochemically, the Ca2+ pump was primarily localized on the enterocyte basolateral membrane. The ATP-dependency and vitamin D enhancement of Ca2+ uptake by isolated basolateral membrane vesicles are shown. Western blot analysis of intestinal mucosa, by using a monoclonal antibody produced against the erythrocyte Ca2+ pump, indicated that the number of pump units is increased by 1,25-dihydroxycholecalciferol. The possible involvement of calbindin-D28K as a direct stimulator of the Ca2+ pump is discussed, and the quantitative relationship between Ca2+ transport rates and Ca2+ pumping activity has been estimated. Information related to the basolateral membrane Na+/Ca2+ exchanger and the vesicular transport model of Ca2+ absorption is also briefly reviewed.


Digestive Diseases and Sciences | 1991

Liver tumor promotion : effect of phenobarbital on EGF and protein kinase C signal transduction and transforming growth factor-β1 expression

Randy L. Jirtle; Sharon A. Meyer

Phenobarbital (PB) added to the medium of cultured rat hepatocytes alters epidermal growth factor (EGF) dependent mitogenesis in a biphasic manner; PB concentrations<1.5 mM are growth stimulatory but higher concentrations significantly inhibit normal hepatocyte proliferation. In contrast, the growth of putative preneoplastic cells is inhibited less by high concentrations of PB. Mechanistic studies designed to test the ability of PB to alter the early events of EGF signal transduction demonstrate that PB neither competes with EGF for binding to the EGF receptor nor alters EGF-induced receptor down-regulation. However, pretreatment with PB (>1 mM) results in a transient inhibition of EGF binding to hepatocytes. The kinetics of this effect are similar to those obtained when hepatocytes are exposed to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), a skin tumor promoter and activator of Ca2+/phospholipid-dependent protein kinase C. However, several observations suggest that distinct mechanisms mediate the responses to these two tumor promoters. First, the inhibitory effects of PB and TPA on EGF binding are additive. Also down-regulation of EGF receptors in response to TPA occurs with hepatocytes, A431 epidermal carcinoma cells, HepG2 hepatoma cells, and rat liver epithelial cells, but only hepatocytes are sensitive to PB. Furthermore, translocation of protein kinase C to the membrane occurs in hepatocytes treated with TPA but not in those treated with PB. The chronic treatment of rats with PB further sensitizes hepatocytes to EGF receptor downregulation by inin vitro PB while desensitizing them to EGF receptor down-regulation by TPA. This latter effect is correlated with a decreased ability of TPA to induce translocation of protein kinase C to the membrane. PB significantly increases the intracellular concentration of TGF-β1 in periportal hepatocytes but not in putative preneoplastic cells. TGF-β1 may therefore have an important function in regulating early stages of cell cycle progression in proliferating hepatocytes.


BMC Bioinformatics | 2006

Comparison of transcriptional responses in liver tissue and primary hepatocyte cell cultures after exposure to hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine.

Edward J. Perkins; Wenjun Bao; Xin Guan; Choo-Yaw Ang; Russell D. Wolfinger; Tzu-Ming Chu; Sharon A. Meyer; Laura S. Inouye

BackgroundCell culture systems are useful in studying toxicological effects of chemicals such as Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), however little is known as to how accurately isolated cells reflect responses of intact organs. In this work, we compare transcriptional responses in livers of Sprague-Dawley rats and primary hepatocyte cells after exposure to RDX to determine how faithfully the in vitro model system reflects in vivo responses.ResultsExpression patterns were found to be markedly different between liver tissue and primary cell cultures before exposure to RDX. Liver gene expression was enriched in processes important in toxicology such as metabolism of amino acids, lipids, aromatic compounds, and drugs when compared to cells. Transcriptional responses in cells exposed to 7.5, 15, or 30 mg/L RDX for 24 and 48 hours were different from those of livers isolated from rats 24 hours after exposure to 12, 24, or 48 mg/Kg RDX. Most of the differentially expressed genes identified across conditions and treatments could be attributed to differences between cells and tissue. Some similarity was observed in RDX effects on gene expression between tissue and cells, but also significant differences that appear to reflect the state of the cell or tissue examined.ConclusionLiver tissue and primary cells express different suites of genes that suggest they have fundamental differences in their cell physiology. Expression effects related to RDX exposure in cells reflected a fraction of liver responses indicating that care must be taken in extrapolating from primary cells to whole animal organ toxicity effects.


PLOS ONE | 2011

Analysis of Common and Specific Mechanisms of Liver Function Affected by Nitrotoluene Compounds

Youping Deng; Sharon A. Meyer; Xin Guan; Barbara Lynn Escalon; Junmei Ai; Mitchell S. Wilbanks; Ruth Welti; Natàlia Garcia-Reyero; Edward J. Perkins

Background Nitrotoluenes are widely used chemical manufacturing and munitions applications. This group of chemicals has been shown to cause a range of effects from anemia and hypercholesterolemia to testicular atrophy. We have examined the molecular and functional effects of five different, but structurally related, nitrotoluenes on using an integrative systems biology approach to gain insight into common and disparate mechanisms underlying effects caused by these chemicals. Methodology/Principal Findings Sprague-Dawley female rats were exposed via gavage to one of five concentrations of one of five nitrotoluenes [2,4,6-trinitrotoluene (TNT), 2-amino-4,6-dinitrotoluene (2ADNT) 4-amino-2,6-dinitrotoulene (4ADNT), 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT)] with necropsy and tissue collection at 24 or 48 h. Gene expression profile results correlated well with clinical data and liver histopathology that lead to the concept that hematotoxicity was followed by hepatotoxicity. Overall, 2,4DNT, 2,6DNT and TNT had stronger effects than 2ADNT and 4ADNT. Common functional terms, gene expression patterns, pathways and networks were regulated across all nitrotoluenes. These pathways included NRF2-mediated oxidative stress response, aryl hydrocarbon receptor signaling, LPS/IL-1 mediated inhibition of RXR function, xenobiotic metabolism signaling and metabolism of xenobiotics by cytochrome P450. One biological process common to all compounds, lipid metabolism, was found to be impacted both at the transcriptional and lipid production level. Conclusions/Significance A systems biology strategy was used to identify biochemical pathways affected by five nitroaromatic compounds and to integrate data that tie biochemical alterations to pathological changes. An integrative graphical network model was constructed by combining genomic, gene pathway, lipidomic, and physiological endpoint results to better understand mechanisms of liver toxicity and physiological endpoints affected by these compounds.


Bioorganic & Medicinal Chemistry | 2010

Design, synthesis, and biological evaluation of dibromotyrosine analogues inspired by marine natural products as inhibitors of human prostate cancer proliferation, invasion, and migration

Asmaa A. Sallam; Sindhura Ramasahayam; Sharon A. Meyer; Khalid A. El Sayed

Bioactive secondary metabolites originating from dibromotyrosine are common in marine sponges, such as sponges of the Aplysina species. Verongiaquinol (1), 3,5-dibromo-1-hydroxy-4-oxocyclohexa-2,5-diene-1-acetamide, and aeroplysinin-1 are examples of such bioactive metabolites. Previous studies have shown the potent antimicrobial as well as cytotoxic properties of verongiaquinol and the anti-angiogenic activity of aeroplysinin-1. The work presented herein shows the design and synthesis of dibromotyrosine-inspired phenolic ester and ether analogues with anti-angiogenic, anti-proliferative and anti-migratory properties and negligible cytotoxicity. Several analogues were synthesized based on docking experiments in the ATP binding site of VEGFR2 and their anti-angiogenic potential and ability to inhibit angiogenesis and prostate cancer proliferation, migration and invasion were evaluated using the chick chorioallantoic membrane (CAM) assay, MTT, wound-healing, and Cultrex® BME cell invasion assay models, respectively. Analogues with high docking scores showed promising anti-angiogenic activity in the CAM assay. In general, ester analogues (5, 6, and 8-10) proved to be of higher anti-migratory activity whereas ether analogues (11-14) showed better anti-proliferative activity. These results demonstrate the potential of dibromotyrosines as promising inhibitory scaffolds for the control of metastatic prostate cancer proliferation and migration.


Journal of Biochemical and Molecular Toxicology | 2008

Comparative cytotoxicity of alachlor, acetochlor, and metolachlor herbicides in isolated rat and cryopreserved human hepatocytes.

Vijay M. Kale; Sonia R. Miranda; Mitchell S. Wilbanks; Sharon A. Meyer

Noncancerous adverse effects observed at the lowest dose for chloroacetanilide herbicides alachlor [2‐chloro‐2′,6′‐diethyl‐N‐(methoxymethyl)‐acetanilide] and acetochlor [2‐chloro‐2′‐methyl‐6′‐ethyl‐N‐(ethoxymethyl)acetanilide], but not metolachlor [2‐chloro‐2′‐ethyl‐6′‐methyl‐N‐(1‐methyl‐2‐methoxymethyl)acetanilide], are hepatotoxicity in rats and dogs. Liver microsomal N‐dealkylation, a step in the putative activating pathway, of acetochlor exceeds that of alachlor and is negligible for metolachlor. In the present investigation, cytotoxicity of the three chloroacetanilides was ranked using isolated rat and cryopreserved human hepatocytes to correlate this endpoint with CYP3A‐dependent metabolism. Chloroacetanilide cytotoxicity in rat hepatocyte suspensions was time dependent (e.g., LC50 ‐ alachlor/2 h vs. LC50 ‐ alachlor/4 h = 765 vs. 325 μM). Alachlor and acetochlor were more potent than metolachlor after 2 and 4 h, times when N‐dealkylated alachlor product 2‐chloro‐N‐(2,6‐diethylphenyl)acetamide (CDEPA) formation was readily detectable. Alachlor and acetochlor potencies with cryopreserved human hepatocytes at 2 h were comparable to freshly isolated rat hepatocytes, and alachlor metabolism to CDEPA was likewise detectable. Unlike rat hepatocytes, metolachlor potency was equivalent to acetochlor and alachlor in human hepatocytes. Furthermore, chloroacetanilide cytotoxicity from two sources of human hepatocytes varied inversely with CYP3A4 activity. Collectively, while cytotoxicity in rat hepatocytes was consistent with chloroacetanilide activation by CYP3A, an activating role for CYP3A4 was not supported with human hepatocytes.


The International Journal of Biochemistry & Cell Biology | 2012

The opposite effects of doxorubicin on bone marrow stem cells versus breast cancer stem cells depend on glucosylceramide synthase.

Kaustubh N. Bhinge; Vineet Gupta; Salman B. Hosain; Seetharama D. Satyanarayanajois; Sharon A. Meyer; Benny L. Blaylock; Qian-Jin Zhang; Yong-Yu Liu

Myelosuppression and drug resistance are common adverse effects in cancer patients with chemotherapy, and those severely limit the therapeutic efficacy and lead treatment failure. It is unclear by which cellular mechanism anticancer drugs suppress bone marrow, while drug-resistant tumors survive. We report that due to the difference of glucosylceramide synthase (GCS), catalyzing ceramide glycosylation, doxorubicin (Dox) eliminates bone marrow stem cells (BMSCs) and expands breast cancer stem cells (BCSCs). It was found that Dox decreased the numbers of BMSCs (ABCG2(+)) and the sphere formation in a dose-dependent fashion in isolated bone marrow cells. In tumor-bearing mice, Dox treatments (5mg/kg, 6 days) decreased the numbers of BMSCs and white blood cells; conversely, those treatments increased the numbers of BCSCs (CD24(-)/CD44(+)/ESA(+)) more than threefold in the same mice. Furthermore, therapeutic-dose of Dox (1mg/kg/week, 42 days) decreased the numbers of BMSCs while it increased BCSCs in vivo. Breast cancer cells, rather than bone marrow cells, highly expressed GCS, which was induced by Dox and correlated with BCSC pluripotency. These results indicate that Dox may have opposite effects, suppressing BMSCs versus expanding BCSCs, and GCS is one determinant of the differentiated responsiveness of bone marrow and cancer cells.


European Journal of Medicinal Chemistry | 2013

Indole diterpene alkaloids as novel inhibitors of the Wnt/β-catenin pathway in breast cancer cells

Asmaa A. Sallam; Nehad M. Ayoub; Ahmed I. Foudah; Chris R. Gissendanner; Sharon A. Meyer; Khalid A. El Sayed

Penitrems are indole diterpene alkaloids best known for their BK channel inhibition and tremorgenic effects in mammals. In a previous study, penitrems A-F (1-5), their biosynthetic precursors, paspaline (6) and emindole SB (7), and two brominated penitrem analogs 8 and 9 demonstrated promising in vitro antiproliferative, antimigratory, and anti-invasive effects in the MTT (MCF-7 and MDA-MB-231), wound-healing, and Cultrex BME cell invasion (MDA-MB-231) assays, respectively. The study herein reports the novel ability of penitrem A to suppress total β-catenin levels in MDA-MB-231 mammary cancer cells. Nine new penitrem analogs (10-18) were semisynthetically prepared, in an attempt to identify pharmacophores correlated with BK channel inhibition and tremorgenicity of penitrems and decrease their toxicity. The degree of BK channel inhibition was assessed using the nematode Caenorhabditis elegans, and in vivo tremorgenic EC₅₀ was calculated using CD-1 male mice following an Up-and-Down Procedure (UDP). Although new analogs were generally less active than parent compound 1, some showed no BK channel inhibition or tremorgenicity and retained the ability of penitrem A (1) to suppress total β-catenin levels in MDA-MB-231 cells. Paspaline (6) and emindole SB (7), both lacking BK channel inhibition and tremorgenicity, represent the simplest indole diterpene skeleton that retains the antiproliferative, antimigratory and total β-catenin suppressing effects shown by the more complex penitrem A (1).


Biochemical and Biophysical Research Communications | 1989

Phenobarbital decreases hepatocyte EGF receptor expression independent of protein kinase C activation.

Sharon A. Meyer; Randy L. Jirtle

The liver tumor promoter, phenobarbital, directly applied to cultured, adult rat hepatocytes at concentrations of greater than 1 mM, decreases cellular surface binding of EGF. This effect of phenobarbital resembles that of 4 beta-phorbol-12 alpha-myristate-13 beta-acetate (TPA) in that both decrease EGF receptor number, but do not affect receptor affinity. The effects of the two tumor promoters differ however, in that only TPA reduces high affinity EGF binding by A431 cells. They also differ in that TPA, but not phenobarbital, causes redistribution of protein kinase C from a soluble to a membranous hepatocyte subcellular fraction. These data indicate that decreased EGF binding is a common hepatocyte response to the tumor promoters, TPA and phenobarbital, but that this response can be mediated by either a TPA-activated, protein kinase C-dependent pathway or by a phenobarbital-sensitive, protein kinase C-independent pathway.


International Journal of Toxicology | 2003

The herbicide metolachlor induces liver cytochrome P450s 2B1/2 and 3A1/2, but not thyroxine-uridine dinucleotide phosphate glucuronosyltransferase and associated thyroid gland activity.

Shana R. Dalton; Richard T. Miller; Sharon A. Meyer

Metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide) is widely used internationally as a corn and cotton herbicide. The metolachlor effects noted in rats during testing for U.S. pesticide registration include increased liver weight and hepatocarcinogenicity associated with eosinophilic foci. These properties, plus nongenotoxicity, are also characteristic of the prototypical rat liver tumor promoter, phenobarbital. Phenobarbital induces hepatic cytochrome P450s CYP2B1/2 and CYP3A1/2 and thyroxine (T4)-UDP-glucuronosyltransferase (T4-UGT), which enhances thyroxine clearance and thus indirectly increases thyroid gland activity. Because other chloroacetanilide herbicides are known to similarly affect rat thyroid gland, this study tested the hypothesis that metolachlor would have these additional phenobarbital-like effects on liver, especially that of T4-UGT induction with consequential stimulation of thyroid gland. Effects of metolachlor, fed to male Sprague-Dawley rats for 14 days at the carcinogenic dose of 3000 ppm, were compared to those of equimolar phenobarbital. Liver microsomal CYP2B1/2 and CYP3A1/2 were probed by immunoblotting and T4-UGT was measured enzymat-ically. Serum T4, triiodothyronine (T3), and thyroid-stimulating hormone (TSH) and thyroid follicular epithelial cell morphology and proliferation were used to assess thyroid gland activity. Metolachlor induced CYP2B1/2 and CYP3A1/2 proteins, but unlike phenobarbital, did not affect T4-UGT activity. In agreement, serum T4, T3, or TSH were unaffected by metolachlor. Also, no significant effects of metolachlor on thyroid gland morphology or follicular epithelial cell height or proliferation were observed. These data demonstrate that metolachlor is an inducer of hepatic CYP2B1/2 activity. But unlike the prototypical CYP2B1/2 inducer phenobarbital, metolachlor does not cause an increase in T4-glucuronidation and thyroid gland activation.

Collaboration


Dive into the Sharon A. Meyer's collaboration.

Top Co-Authors

Avatar

Randy L. Jirtle

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Edward J. Perkins

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Khalid A. El Sayed

University of Louisiana at Monroe

View shared research outputs
Top Co-Authors

Avatar

Mitchell S. Wilbanks

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Robert C. Smart

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Xin Guan

United States Army Corps of Engineers

View shared research outputs
Top Co-Authors

Avatar

Ahmed I. Foudah

University of Louisiana at Monroe

View shared research outputs
Top Co-Authors

Avatar

Asmaa A. Sallam

University of Louisiana at Monroe

View shared research outputs
Top Co-Authors

Avatar

Dominic A. Scudiero

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Glenda J. Moser

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge