Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharon B. Sneed is active.

Publication


Featured researches published by Sharon B. Sneed.


Annals of Glaciology | 2004

Climate Variability in West Antarctica Derived from Annual Accumulation-Rate Records from ITASE Firn/Ice Cores

Susan Kaspari; Paul Andrew Mayewski; Daniel A. Dixon; Vandy Blue Spikes; Sharon B. Sneed; Michael Handley; Gordon S. Hamilton

Abstract Thirteen annually resolved accumulation-rate records covering the last ~200 years from the Pine Island–Thwaites and Ross drainage systems and the South Pole are used to examine climate variability over West Antarctica. Accumulation is controlled spatially by the topography of the ice sheet, and temporally by changes in moisture transport and cyclonic activity. A comparison of mean accumulation since 1970 at each site to the long-term mean indicates an increase in accumulation for sites located in the western sector of the Pine Island–Thwaites drainage system. Accumulation is negatively associated with the Southern Oscillation Index (SOI) for sites near the ice divide, and periods of sustained negative SOI (1940–42, 1991–95) correspond to above-mean accumulation at most sites. Correlations of the accumulation-rate records with sea-level pressure (SLP) and the SOI suggest that accumulation near the ice divide and in the Ross drainage system may be associated with the mid-latitudes. The post-1970 increase in accumulation coupled with strong SLP–accumulation-rate correlations near the coast suggests recent intensification of cyclonic activity in the Pine Island– Thwaites drainage system.


Annals of Glaciology | 2005

Snow Chemistry Across Antarctica

Nancy A. N. Bertler; Paul Andrew Mayewski; Alberto J. Aristarain; P. Barrett; S. Becagli; R. Bernardo; S. Bo; C. Xiao; M. Curran; D. Qin; Daniel A. Dixon; Francisco A. Ferron; Hubertus Fischer; Markus M. Frey; M. Frezzotti; F. Fundel; C. Genthon; Roberto Gragnani; Gordon S. Hamilton; M. Handley; Sungmin Hong; Elisabeth Isaksson; J.-H. Kang; J. Ren; K. Kamiyama; S. Kanamori; E. Karkas; L. Karlöf; Susan Kaspari; Karl J. Kreutz

Abstract An updated compilation of published and new data of major-ion (Ca, Cl, K, Mg, Na, NO3, SO4) and methylsulfonate (MS) concentrations in snow from 520 Antarctic sites is provided by the national ITASE (International Trans-Antarctic Scientific Expedition) programmes of Australia, Brazil, China, Germany, Italy, Japan, Korea, New Zealand, Norway, the United Kingdom, the United States and the national Antarctic programme of Finland. The comparison shows that snow chemistry concentrations vary by up to four orders of magnitude across Antarctica and exhibit distinct geographical patterns. The Antarctic-wide comparison of glaciochemical records provides a unique opportunity to improve our understanding of the fundamental factors that ultimately control the chemistry of snow or ice samples. This paper aims to initiate data compilation and administration in order to provide a framework for facilitation of Antarctic-wide snow chemistry discussions across all ITASE nations and other contributing groups. The data are made available through the ITASE web page (http://www2.umaine.edu/itase/content/syngroups/snowchem.html) and will be updated with new data as they are provided. In addition, recommendations for future research efforts are summarized.


Journal of Climate | 2007

A High-Resolution Record of Atmospheric Dust Composition and Variability Since Ad 1650 from a Mount Everest Ice Core

Susan Kaspari; Paul Andrew Mayewski; M. Handley; Shichang Kang; Shirui Hou; Sharon B. Sneed; Kirk A. Maasch; Dong-Mei Qin

Abstract A Mount Everest ice core analyzed at high resolution for major and trace elements (Sr, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, U, Tl, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co) and spanning the period a.d. 1650–2002 is used to investigate the sources of and variations in atmospheric dust through time. The chemical composition of dust varies seasonally, and peak dust concentrations occur during the winter–spring months. Significant correlations between the Everest dust record and dust observations at stations suggest that the Everest record is representative of regional variations in atmospheric dust loading. Back-trajectory analysis in addition to a significant correlation of Everest dust concentrations and the Total Ozone Mapping Spectrometer (TOMS) aerosol index indicates that the dominant winter sources of dust are the Arabian Peninsula, Thar Desert, and northern Sahara. Factors that contribute to dust generation at the surface include soil moisture and temperature, and the long...


Annals of Glaciology | 2005

Solar forcing of the polar atmosphere

Paul Andrew Mayewski; Kirk A. Maasch; Yuping Yan; Shichang Kang; Eric A. Meyerson; Sharon B. Sneed; Susan Kaspari; Daniel A. Dixon; Erich C. Osterberg; Vin Morgan; Tas D. van Ommen; Mark A. J. Curran

Abstract We present highly resolved, annually dated, calibrated proxies for atmospheric circulation from several Antarctic ice cores (ITASE (International Trans-Antarctic Scientific Expedition), Siple Dome, Law Dome) that reveal decadal-scale associations with a South Pole ice-core 10Be proxy for solar variability over the last 600 years and annual-scale associations with solar variability since AD 1720. We show that increased (decreased) solar irradiance is associated with increased (decreased) zonal wind strength near the edge of the Antarctic polar vortex. The association is particularly strong in the Indian and Pacific Oceans and as such may contribute to understanding climate forcing that controls drought in Australia and other Southern Hemisphere climate events. We also include evidence suggestive of solar forcing of atmospheric circulation near the edge of the Arctic polar vortex based on ice-core records from Mount Logan, Yukon Territory, Canada, and both central and south Greenland as enticement for future investigations. Our identification of solar forcing of the polar atmosphere and its impact on lower latitudes offers a mechanism for better understanding modern climate variability and potentially the initiation of abrupt climate-change events that operate on decadal and faster scales.


Annals of Glaciology | 2005

A 200 Year Sulfate Record from Sixteen Antarctic Ice Cores and Associations With Southern Ocean Sea-Ice Extent

Daniel A. Dixon; Paul Andrew Mayewski; Susan Kaspari; Karl J. Kreutz; Gordon S. Hamilton; Kirk A. Maasch; Sharon B. Sneed; Michael Handley

Abstract Chemistry data from 16, 50–115m deep, sub-annually dated ice cores are used to investigate spatial and temporal concentration variability of sea-salt (ss) SO4 2– and excess (xs) SO4 2– over West Antarctica and the South Pole for the last 200 years. Low-elevation ice-core sites in western West Antarctica contain higher concentrations of SO4 2– as a result of cyclogenesis over the Ross Ice Shelf and proximity to the Ross Sea Polynya. Linear correlation analysis of 15 West Antarctic ice-core SO4 2– time series demonstrates that at several sites concentrations of ssSO4 2– are higher when sea-ice extent (SIE) is greater, and the inverse for xsSO4 2–. Concentrations of xsSO4 2– from the South Pole site (East Antarctica) are associated with SIE from the Weddell region, and West Antarctic xsSO4 2– concentrations are associated with SIE from the Bellingshausen–Amundsen–Ross region. The only notable rise of the last 200 years in xsSO4 2–, around 1940, is not related to SIE fluctuations and is most likely a result of increased xsSO4 2– production in the mid–low latitudes and/or an increase in transport efficiency from the mid–low latitudes to central West Antarctica. These high-resolution records show that the source types and source areas of ssSO4 2– and xsSO4 2– delivered to eastern and western West Antarctica and the South Pole differ from site to site but can best be resolved using records from spatial ice-core arrays such as the International Trans-Antarctic Scientific Expedition (ITASE).


Journal of Glaciology | 2010

Discovery of a nanodiamond-rich layer in the Greenland ice sheet

Andrei V. Kurbatov; Paul Andrew Mayewski; Jørgen Peder Steffensen; Allen West; Douglas J. Kennett; James P. Kennett; Theodore E. Bunch; M. Handley; Douglas S. Introne; Shane S. Que Hee; Christopher Mercer; M. Sellers; Feng Shen; Sharon B. Sneed; James C. Weaver; James H. Wittke; Thomas W. Stafford; John J. Donovan; Sujing Xie; Joshua J. Razink; Adrienne Stich; Charles R. Kinzie; Wendy S. Wolbach

We report the discovery in the Greenland ice sheet of a discrete layer of free nanodiamonds (NDs) in very high abundances, implying most likely either an unprecedented influx of extraterrestrial (ET) material or a cosmic impact event that occurred after the last glacial episode. From that layer, we extracted n-diamonds and hexagonal diamonds (lonsdaleite), an accepted ET impact indicator, at abundances of up to about 5×10 6 times background levels in adjacent younger and older ice. The NDs in the concentrated layer are rounded, suggesting they most likely formed during a cosmic impact through some process similar to carbon-vapor deposition or high-explosive detonation. This morphology has not been reported previously in cosmic material, but has been observed in terrestrial impact material. This is the first highly enriched, discrete layer of NDs observed in glacial ice anywhere, and its presence indicates that ice caps are important archives of ET events of varying magnitudes. Using a preliminary ice chronology based on oxygen isotopes and dust stratigraphy, the ND-rich layer appears to be coeval with ND abundance peaks reported at numerous North American sites in a sedimentary layer, the Younger Dryas boundary layer (YDB), dating to 12.9 ± 0.1 ka. However, more investigation is needed to confirm this association.


Annals of Glaciology | 2004

Monsoonal Circulation of the McMurdo Dry Valleys, Ross Sea Region, Antarctica: Signal from the Snow Chemistry

Nancy A. N. Bertler; Paul Andrew Mayewski; P. J. Barrett; Sharon B. Sneed; Michael Handley; Karl J. Kreutz

Abstract McMurdo Dry Valleys (MDV; Ross Sea region, Antarctica) precipitation exhibits extreme seasonality in ion concentration, 3–5 orders of magnitude between summer and winter precipitation. To identify aerosol sources and investigate causes for the observed amplitude in concentration variability, four snow pits were sampled along a coast–Polar Plateau transect across the MDV. The elevation of the sites ranges from 50 to 2400 m and the distance from the coast from 8 to 93 km. Average chemistry gradients along the transect indicate that most species have either a predominant marine or terrestrial source in the MDV. Empirical orthogonal function analysis on the snow-chemistry time series shows that at least 57% of aerosol deposition occurs concurrently. A conceptual climate model, based on meteorological observations, is used to explain the strong seasonality in the MDV. Our results suggest that radiative forcing of the ice-free valleys creates a surface low-pressure cell during summer which promotes air-mass flow from the Ross Sea. The associated precipitating air mass is relatively warm, humid and contains a high concentration of aerosols. During winter, the MDV are dominated by air masses draining off the East Antarctic ice sheet, that are characterized by cold, dry and low concentrations of aerosols. The strong differences between these two air-mass sources create in the MDV a polar version of the monsoonal flow, with humid, warm summers and dry, cold winters.


Geophysical Research Letters | 2015

Twentieth century dust lows and the weakening of the westerly winds over the Tibetan Plateau

B. Grigholm; Paul Andrew Mayewski; Shichang Kang; Yulan Zhang; U. Morgenstern; Margit Schwikowski; Susan Kaspari; Vladimir B. Aizen; Elena M. Aizen; Nobuo Takeuchi; Kirk A. Maasch; Sean D. Birkel; M. Handley; Sharon B. Sneed

Understanding past atmospheric dust variability is necessary to put modern atmospheric dust into historical context and assess the impacts of dust on the climate. In Asia, meteorological data of atmospheric dust is temporally limited, beginning only in the 1950s. High-resolution ice cores provide the ideal archive for reconstructing preinstrumental atmospheric dust concentrations. Using a ~500 year (1477–1982 A.D.) annually resolved calcium (Ca) dust proxy from a Tibetan Plateau (TP) ice core, we demonstrate the lowest atmospheric dust concentrations in the past ~500 years during the latter twentieth century. Declines in late nineteenth to twentieth century Ca concentrations significantly correspond with regional zonal wind trends from two reanalysis models, suggesting that the Ca record provides a proxy for the westerlies. Twentieth century warming and attendant atmospheric pressure reductions over northern Asia have potentially reduced temperature/pressure gradients resulting in lower zonal wind velocities and associated dust entrainment/transport in the past ~500 years over the TP.


Journal of Geophysical Research | 2009

Atmospheric soluble dust records from a Tibetan ice core: Possible climate proxies and teleconnection with the Pacific Decadal Oscillation

B. Grigholm; Paul Andrew Mayewski; Shichang Kang; Yulan Zhang; Susan Kaspari; Sharon B. Sneed; Qiwen Zhang

record (1935–2005). Statistical analysis of major ion time series suggests that atmospheric soluble dust species dominate the chemical signature and that background dust levels conceal marine ion species deposition. The soluble dust time series have interspecies relations and common structure (empirical orthogonal function (EOF) 1), suggesting a similar soluble dust source or transport route. Annual and seasonal correlations between the EOF 1 time series and National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis climate variables (1948–2004) suggest that the Mt. Geladaindong ice core record provides a proxy for local and regional surface pressure. An approximately threefold decrease of soluble dust concentrations in the middle to late 1970s, accompanied by regional increases in pressure and temperature and decreases in wind velocity, coincides with the major 1976–1977 shift of the Pacific Decadal Oscillation (PDO) from a negative to a positive state. This is the first ice core evidence of a potential teleconnection between central Asian atmospheric soluble dust loading and the PDO. Analysis of temporally longer ice cores from Mt. Geladaindong may enhance understanding of the relationship between the PDO and central Asian atmospheric circulation and subsequent atmospheric soluble dust loading.


Journal of Geophysical Research | 2014

Mount Logan ice core record of tropical and solar influences on Aleutian Low variability: 500–1998 A.D.

Erich C. Osterberg; Paul Andrew Mayewski; David A. Fisher; Karl J. Kreutz; Kirk A. Maasch; Sharon B. Sneed; Eric P. Kelsey

Continuous, high-resolution paleoclimate records from the North Pacific region spanning the past 1500 years are rare; and the behavior of the Aleutian Low (ALow) pressure center, the dominant climatological feature in the Gulf of Alaska, remains poorly constrained. Here we present a continuous, 1500 year long, calibrated proxy record for the strength of the wintertime (December–March) ALow from the Mount Logan summit (PR Col; 5200 m asl) ice core soluble sodium time series. We show that ice core sodium concentrations are statistically correlated with North Pacific sea level pressure and zonal wind speed. Our ALow proxy record reveals a weak ALow from circa 900–1300 A.D. and 1575–1675 A.D., and a comparatively stronger ALow from circa 500–900 A.D., 1300–1575 A.D., and 1675 A.D. to present. The Mount Logan ALow proxy record shows strong similarities with tropical paleoclimate proxy records sensitive to the El Nino–Southern Oscillation and is consistent with the hypothesis that the Medieval Climate Anomaly was characterized by more persistent La Nina-like conditions while the Little Ice Age was characterized by at least two intervals of more persistent El Nino-like conditions. The Mount Logan ALow proxy record is significantly (p < 0.05) correlated and coherent with solar irradiance proxy records over various time scales, with stronger solar irradiance generally associated with a weaker ALow and La Nina-like tropical conditions. However, a step-like increase in ALow strength during the Dalton solar minimum circa 1820 is associated with enhanced Walker circulation. Furthermore, rising CO2 forcing or internal variability may be masking the twentieth century rise in solar irradiance.

Collaboration


Dive into the Sharon B. Sneed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Kaspari

Central Washington University

View shared research outputs
Top Co-Authors

Avatar

Shichang Kang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy A. N. Bertler

Victoria University of Wellington

View shared research outputs
Researchain Logo
Decentralizing Knowledge