Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharon Gilaie-Dotan is active.

Publication


Featured researches published by Sharon Gilaie-Dotan.


Human Brain Mapping | 2002

Shape-selective stereo processing in human object-related visual areas

Sharon Gilaie-Dotan; Shimon Ullman; Tammar Kushnir; Rafael Malach

Object related areas in the human ventral stream were previously shown to be activated, in a shape‐selective manner, by luminance, motion, and texture cues. We report on the preferential activation of these areas by stereo cues defining shape. To assess the relationship of this activation to object recognition, we employed a perceptual stereo effect, which profoundly affects object recognition. The stimuli consisted of stereo‐defined line drawings of objects that either protruded in front of a flat background (“front”), or were sunk into the background (“back”). Despite the similarity in the local feature structure of the two conditions, object recognition was superior in the “front” compared to the “back” configuration. We measured both recognition rates and fMRI signal from the human visual cortex while subjects viewed these stimuli. The results reveal shape selective activation from images of objects defined purely by stereoscopic cues in the human ventral stream. Furthermore, they show a significant correlation between recognition and fMRI signal in the object‐related occipito‐temporal cortex (lateral occipital complex). Hum. Brain Mapping 15:67–79, 2001.


Cerebral Cortex | 2010

Top-Down Engagement Modulates the Neural Expressions of Visual Expertise

Assaf Harel; Sharon Gilaie-Dotan; Rafael Malach; Shlomo Bentin

Perceptual expertise is traditionally associated with enhanced brain activity in response to objects of expertise in category-selective visual cortex, primarily face-selective regions. We reevaluated this view by investigating whether the brain activity associated with expertise in object recognition is limited to category-selective cortex and specifically whether the extent of expertise-related activity manifests automatically or whether it can be top-down modulated. We conducted 2 functional magnetic resonance imaging studies comparing changes in hemodynamic activity associated with car expertise in a conventional 1-back task (Experiment 1) and when the task relevance of cars was explicitly manipulated (Experiment 2). Whole-brain analysis unveiled extensive expertise-related activity throughout the visual cortex, starting as early as V1 and extending into nonvisual areas. However, when the cars were task irrelevant, the expertise-related activity drastically diminished, indeed, becoming similar to the activity elicited by cars in novices. We suggest that expertise entails voluntary top-down engagement of multiple neural networks in addition to stimulus-driven activation associated with perceptual mechanisms.


Neuropsychologia | 2013

Neuroanatomical correlates of biological motion detection

Sharon Gilaie-Dotan; Ryota Kanai; Bahador Bahrami; Geraint Rees; Ayse Pinar Saygin

Biological motion detection is both commonplace and important, but there is great inter-individual variability in this ability, the neural basis of which is currently unknown. Here we examined whether the behavioral variability in biological motion detection is reflected in brain anatomy. Perceptual thresholds for detection of biological motion and control conditions (non-biological object motion detection and motion coherence) were determined in a group of healthy human adults (n=31) together with structural magnetic resonance images of the brain. Voxel based morphometry analyzes revealed that gray matter volumes of left posterior superior temporal sulcus (pSTS) and left ventral premotor cortex (vPMC) significantly predicted individual differences in biological motion detection, but showed no significant relationship with performance on the control tasks. Our study reveals a neural basis associated with the inter-individual variability in biological motion detection, reliably linking the neuroanatomical structure of left pSTS and vPMC with biological motion detection performance.


Neuropsychologia | 2011

Normal form from biological motion despite impaired ventral stream function

Sharon Gilaie-Dotan; Shlomo Bentin; Michal Harel; Geraint Rees; Ayse Pinar Saygin

Research highlights ▶ Normal biological motion processing can exist independently from form processing. ▶ Intact ventral stream processing is not necessary for biological form-from-motion. ▶ Proper ventral stream processing is necessary for non-biological form-from-motion. ▶ Normal visual inputs from V5/MT+ can suffice to activate the action perception system. ▶ Biological motion can be processed successfully even with compromised ventral stream.


NeuroImage | 2010

Perceptual shape sensitivity to upright and inverted faces is reflected in neuronal adaptation.

Sharon Gilaie-Dotan; Hagar Gelbard-Sagiv; Rafael Malach

Using an fMR-adaptation paradigm for different face morphing levels we have recently demonstrated a narrow neuronal tuning to faces even at the sub-exemplar level which was tightly related to perceptual discrimination (Gilaie-Dotan and Malach, 2007). However, it is unclear whether this relationship is unique to faces or is a general property of object representations including unfamiliar objects, and whether the adaptation tuning is due to physical changes in the stimulus or to changes in perceptual discrimination. Here we compared the same face-morph paradigm for upright and inverted faces, thus modulating familiarity and perceptual discrimination effects while equating all low-level features. We found, as expected, a perceptual “inversion effect”, i.e. a significant reduction in inverted face discrimination. Importantly, the fMR-adaptation tuning in the fusiform face area (FFA) changed in accordance with the different perceptual sensitivity both for upright and inverted faces. Additional object selective regions displayed differential tuning widths to the two categories. Our results are compatible with a model by which the ability of human observers to discriminate objects depends on the shape tuning properties of individual neurons.


The Journal of Neuroscience | 2014

Neuroanatomy Predicts Individual Risk Attitudes

Sharon Gilaie-Dotan; Agnieszka Tymula; Nicole J. Cooper; Joseph W. Kable; Paul W. Glimcher; Ifat Levy

Over the course of the last decade a multitude of studies have investigated the relationship between neural activations and individual human decision-making. Here we asked whether the anatomical features of individual human brains could be used to predict the fundamental preferences of human choosers. To that end, we quantified the risk attitudes of human decision-makers using standard economic tools and quantified the gray matter cortical volume in all brain areas using standard neurobiological tools. Our whole-brain analysis revealed that the gray matter volume of a region in the right posterior parietal cortex was significantly predictive of individual risk attitudes. Participants with higher gray matter volume in this region exhibited less risk aversion. To test the robustness of this finding we examined a second group of participants and used econometric tools to test the ex ante hypothesis that gray matter volume in this area predicts individual risk attitudes. Our finding was confirmed in this second group. Our results, while being silent about causal relationships, identify what might be considered the first stable biomarker for financial risk-attitude. If these results, gathered in a population of midlife northeast American adults, hold in the general population, they will provide constraints on the possible neural mechanisms underlying risk attitudes. The results will also provide a simple measurement of risk attitudes that could be easily extracted from abundance of existing medical brain scans, and could potentially provide a characteristic distribution of these attitudes for policy makers.


European Journal of Neuroscience | 2010

Differing causal roles for lateral occipital cortex and occipital face area in invariant shape recognition.

Juha Silvanto; Dietrich Samuel Schwarzkopf; Sharon Gilaie-Dotan; Geraint Rees

The human extrastriate visual cortex contains functionally distinct regions where neuronal populations exhibit signals that are selective for objects. How such regions might play a causal role in underpinning our ability to recognize objects across different viewpoints remains uncertain. Here, we tested whether two extrastriate areas, the lateral occipital (LO) region and occipital face area (OFA), contained neuronal populations that play a causal role in recognizing two‐dimensional shapes across different rotations. We used visual priming to modulate the rotation‐sensitive activity of neuronal populations in these areas. State‐dependent transcranial magnetic stimulation (TMS) was applied after the presentation of a shape and immediately before a subsequent probe shape to which participants had to respond. We found that TMS applied to both the LO region and OFA modulated rotation‐invariant shape priming but, whereas the LO region was modulated by TMS for small rotations, the OFA was modulated for larger rotations. Importantly, our results demonstrate that a node in the face‐sensitive network, the OFA, participates in causally relevant encoding of non‐face stimuli.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Ventral aspect of the visual form pathway is not critical for the perception of biological motion

Sharon Gilaie-Dotan; Ayse Pinar Saygin; Lauren J. Lorenzi; Geraint Rees; Marlene Behrmann

Significance Perceiving the movements of people around us is critical for many daily skills (from detecting threats to social interactions) and involves both form and motion perception. Even though the “form” visual pathway is standardly activated by biological motion stimuli, it is unknown whether this pathway’s integrity is critical for the perception of biological motion. Here, we examined whether damage to different aspects of the form pathway affects biological motion perception. Individuals with lesions to the ventral aspects of this pathway evinced normal biological motion perception despite their impairments in form perception. Our counterintuitive findings indicate that biological motion can be perceived and processed normally even when the ability to perceive the form or the actor executing the movements is impaired. Identifying the movements of those around us is fundamental for many daily activities, such as recognizing actions, detecting predators, and interacting with others socially. A key question concerns the neurobiological substrates underlying biological motion perception. Although the ventral “form” visual cortex is standardly activated by biologically moving stimuli, whether these activations are functionally critical for biological motion perception or are epiphenomenal remains unknown. To address this question, we examined whether focal damage to regions of the ventral visual cortex, resulting in significant deficits in form perception, adversely affects biological motion perception. Six patients with damage to the ventral cortex were tested with sensitive point-light display paradigms. All patients were able to recognize unmasked point-light displays and their perceptual thresholds were not significantly different from those of three different control groups, one of which comprised brain-damaged patients with spared ventral cortex (n > 50). Importantly, these six patients performed significantly better than patients with damage to regions critical for biological motion perception. To assess the necessary contribution of different regions in the ventral pathway to biological motion perception, we complement the behavioral findings with a fine-grained comparison between the lesion location and extent, and the cortical regions standardly implicated in biological motion processing. This analysis revealed that the ventral aspects of the form pathway (e.g., fusiform regions, ventral extrastriate body area) are not critical for biological motion perception. We hypothesize that the role of these ventral regions is to provide enhanced multiview/posture representations of the moving person rather than to represent biological motion perception per se.


Frontiers in Integrative Neuroscience | 2011

Anatomy of human sensory cortices reflects inter-individual variability in time estimation.

Sharon Gilaie-Dotan; Ryota Kanai; Geraint Rees

The ability to estimate duration is essential to human behavior, yet people vary greatly in their ability to estimate time and the brain structures mediating this inter-individual variability remain poorly understood. Here, we showed that inter-individual variability in duration estimation was highly correlated across visual and auditory modalities but depended on the scale of temporal duration. We further examined whether this inter-individual variability in estimating durations of different supra-second time scales (2 or 12 s) was reflected in variability in human brain anatomy. We found that the gray matter volume in both the right posterior lateral sulcus encompassing primary auditory and secondary somatosensory cortex, plus parahippocampal gyrus strongly predicted an individual’s ability to discriminate longer durations of 12 s (but not shorter ones of 2 s) regardless of whether they were presented in auditory or visual modalities. Our findings suggest that these brain areas may play a common role in modality-independent time discrimination. We propose that an individual’s ability to discriminate longer durations is linked to self-initiated rhythm maintenance mechanisms relying on the neural structure of these modality-specific sensory and parahippocampal cortices.


Brain | 2013

The role of human ventral visual cortex in motion perception

Sharon Gilaie-Dotan; Ayse Pinar Saygin; Lauren J. Lorenzi; Ryan Egan; Geraint Rees; Marlene Behrmann

Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion.

Collaboration


Dive into the Sharon Gilaie-Dotan's collaboration.

Top Co-Authors

Avatar

Geraint Rees

University College London

View shared research outputs
Top Co-Authors

Avatar

Shlomo Bentin

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Rafael Malach

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juha Silvanto

University of Westminster

View shared research outputs
Top Co-Authors

Avatar

Ryota Kanai

Wellcome Trust Centre for Neuroimaging

View shared research outputs
Top Co-Authors

Avatar

Assaf Harel

Wright State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anat Perry

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge