Sharon L. McKenna
University College Cork
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sharon L. McKenna.
Autophagy | 2011
Tracey R. O'Donovan; Gerald C. O'Sullivan; Sharon L. McKenna
We investigated the cell-death mechanisms induced in esophageal cancer cells in response to the chemotherapeutic drugs, 5-fluorouracil (5-FU) and cisplatin. Chemosensitive cell lines exhibited apoptosis whereas chemoresistant populations exhibited autophagy and a morphology resembling type II programmed cell death (PCD). Cell populations that respond with autophagy are more resistant and will recover following withdrawal of the chemotherapeutic agents. Specific inhibition of early autophagy induction with siRNA targeted to Beclin 1 and ATG7 significantly enhanced the effect of 5-FU and reduced the recovery of drug-treated cells. Pharmacological inhibitors of autophagy were evaluated for their ability to improve chemotherapeutic effect. The PtdIns 3-kinase inhibitor 3-methyladenine did not enhance the cytotoxicity of 5-FU. Disruption of lysosomal activity with bafilomycin A1 or chloroquine caused extensive vesicular accumulation but did not improve chemotherapeutic effect. These observations suggest that an autophagic response to chemotherapy is a survival mechanism that promotes chemoresistance and recovery and that selective inhibition of autophagy regulators has the potential to improve chemotherapeutic regimes. Currently available indirect inhibitors of autophagy are, however, ineffective at modulating chemosensitivity in these esophageal cancer cell lines.
British Journal of Cancer | 2009
G O'Sullivan-Coyne; Gerald C. O'Sullivan; Tracey R. O'Donovan; K Piwocka; Sharon L. McKenna
Background:Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines.Methods:MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting.Results:Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5–50 μM range. Cytotoxicity is associated with accumulation in G2/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin–proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug.Conclusion:Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.
Leukemia | 2000
O'Gorman Dm; Sharon L. McKenna; Anne McGahon; Knox Ka; Thomas G. Cotter
Drug resistance remains a serious limiting factor in the treatment of acute myeloid leukaemia (AML) either at initial presentation or following primary or subsequent relapses. Using specific kinase inhibitors, this study has investigated the contribution of the Ras/PI3-kinase regulated survival pathways to drug resistance and suppression of apoptosis in a cell line derived from AML (HL60). Inhibition of the Raf/MAP-kinase (ERK) pathway with a specific MAP-kinase inhibitor, apigenin did not sensitise HL60 cells to drug-induced apoptosis, indicating a lack of involvement in chemoresistance. In contrast, the PI3-kinase inhibitors, LY294002 and wortmannin, did induce a significant increase in apoptosis in combination with cytotoxic drugs. The contribution of downstream mediators of PI3-kinase, p70S6-kinase and PKB/Akt were then investigated. While inhibition of p70S6-kinase with rapamycin did not increase drug-induced apoptosis, PI3-kinase inhibition resulted in notable dephosphorylation of PKB, suggesting that the PI3-kinase/PKB survival pathway may play a major role in chemoresistance in AML. This pathway has been reported to mediate heterodimer interactions with the proapoptotic regulator, Bad. In contrast to previous studies, we found no evidence of Bad binding to anti-apoptotic Bcl-2, Bcl-XLor Mcl-1, or of alterations in Bax heterodimers. This suggests that alternative targets of PI3-kinase/PKB, distinct from the Bcl-2 family may be responsible for contributing to survival factor-mediated drug resistance in AML.
Molecular Cancer Research | 2006
Kamila Wolanin; Adriana Magalska; Grazyna Mosieniak; Rut Klinger; Sharon L. McKenna; Susanne Vejda; Ewa Sikora; Katarzyna Piwocka
The Bcr-Abl oncoprotein plays a major role in the development and progression of chronic myeloid leukemia and is a determinant of chemotherapy resistance occurring during the blast crisis phase of the disease. The aim of this article was to investigate the possibility of combating the resistance to apoptosis caused by Bcr-Abl by inducing an alternative cell death process. As a model of chronic myeloid leukemia, we employed Bcr-Abl-transfected mouse progenitor 32D cells with low and high Bcr-Abl expression levels corresponding to drug-sensitive and drug-resistant cells, respectively. The drug curcumin (diferuloylmethane), a known potent inducer of cell death in many cancer cells, was investigated for efficacy with Bcr-Abl-expressing cells. Curcumin strongly inhibited cell proliferation and affected cell viability by inducing apoptotic symptoms in all tested cells; however, apoptosis was a relatively late event. G2-M cell cycle arrest, together with increased mitotic index and cellular and nuclear morphology resembling those described for mitotic catastrophe, was observed and preceded caspase-3 activation and DNA fragmentation. Mitosis-arrested cells displayed abnormal chromatin organization, multipolar chromosome segregation, aberrant cytokinesis, and multinucleated cells—morphologic changes typical of mitotic catastrophe. We found that the mitotic cell death symptoms correlated with attenuated expression of survivin, a member of the chromosomal passenger complex, and mislocalization of Aurora B, the partner of survivin in the chromosomal passenger complex. Inhibition of survivin expression with small interfering RNA exhibited similar mitotic disturbances, thus implicating survivin as a major, albeit not the only, target for curcumin action. This study shows that curcumin can overcome the broad resistance to cell death caused by expression of Bcr-Abl and suggests that curcumin may be a promising agent for new combination regimens for drug-resistant chronic myeloid leukemia. (Mol Cancer Res 2006;4(7):457–69)
Leukemia | 2001
Karen Keeshan; Ken I. Mills; Thomas G. Cotter; Sharon L. McKenna
A characteristic feature of chronic myeloid leukaemia (CML) is the inevitable advancement from a treatable chronic phase to a fatal, drug-resistant stage referred to as blast crisis. The molecular mechanisms responsible for this disease transition remain unknown. As increased expression of Bcr-Abl has been associated with blast crisis CML, we have established transfectants in 32D cells that express low and high levels of Bcr-Abl, and assessed their drug sensitivity. Cells with high Bcr-Abl expression levels are resistant to conventional cytotoxic drugs, and also require higher levels of STI571 (an inhibitor of Bcr-Abl), to induce cell death. Co-treatment with cytotoxic drugs and STI571 increased the sensitivity of the drug-resistant cells. Despite the drug-resistant phenotype, high Bcr-Abl levels concomitantly increased the expression of p53, p21, Bax and down-regulated Bcl-2. These cells maintain a survival advantage irrespective of a reduced proportion of cycling cells and the pro-apoptotic shift in gene expression. In addition, the level of Bcr-Abl expression (high or low) does not alter the growth factor independence and elevated Bcl-xL expression observed. Our study indicates that drug resistance can be primarily attained by increased Bcr-Abl expression, and highlights the potential of therapy which combines STI571 with conventional cytotoxic drugs.
British Journal of Haematology | 1997
Sharon L. McKenna; Rose Ann Padua
Multidrug resistance hampers successful chemotherapy in many haematological neoplasms and is mediated by several cellular proteins. In some cases, the genes encoding these proteins have been shown to confer resistance on transfer to drug-sensitive cell lines. This is true for the efflux pump product of the MDR1 gene, P-170. Upregulation of enzymes such as GST has been observed, although the contribution of this enzyme in drug resistance expressed by malignant haematopoietic cells is still uncertain. Cells also appear to be able to downregulate enzymes which are drug targets. Examples include the decrease in Topo II which accompanies the resistance shown by cells to VP-16 and VM-26. Although many reports include both presentation and relapsed patients, there are few data on samples drawn from the same patients before and after chemotherapy. While P-170 and GST appear to be raised more often in cells from resistant and relapsed disease, it is quite clear that such mechanisms can be active in de novo malignancy and do not necessarily emerge as a consequence of prior chemotherapy. Methods of detecting drug resistance are reviewed here; these include in vitro cellular assays for drug toxicity, and molecular, immunological and functional detection of P-170 or Topo II. The clinical evaluation of such assays is only just beginning and some of the data are contradictory. To some extent, this may reflect the complex way in which the various resistance mechanisms may interact. Nevertheless, there are some encouraging early signs that the application of these assays to clinical material will yield valuable data on the relative contributions of these mechanisms and on ways in which they may be overcome. At present, much attention has focused on the potential of agents which prevent the P-170 efflux pump from exporting cytotoxics from the cell. This is likely to be only the first of new therapies arising from an improved understanding of multidrug resistance. More immediately, assays for multidrug resistance and its parameters may find their place as routine diagnostic and prognostic tools in the laboratory.
Biochemical Society Transactions | 2008
Michelle J. Nyhan; Gerald C. O'Sullivan; Sharon L. McKenna
The VHL (von Hippel-Lindau) tumour-suppressor gene is inactivated in VHL disease and in sporadic cases of CCRCC [clear-cell RCC (renal cell carcinoma)]. pVHL (VHL protein) functions as part of an E3 ubiquitin ligase complex that targets proteins for proteasomal degradation. The best-characterized substrate is HIF-alpha (hypoxia-inducible factor-alpha). Loss of pVHL and subsequent up-regulation of HIF target genes has been attributed to the highly vascular nature of these neoplasms. However, pVHL does not just function as the executioner of HIF-alpha. Additional functions of pVHL that may be important in preventing CCRCC tumorigenesis have been identified, including primary cilium maintenance, assembly of the extracellular matrix and roles in the stabilization of p53 and Jade-1 (gene for apoptosis and differentiation in epithelia). Current evidence indicates that pVHL probably requires additional co-operating signalling pathways for CCRCC initiation and tumorigenesis.
Advances in Cancer Research | 1997
Sharon L. McKenna; Thomas G. Cotter
Apoptosis is an internally directed, physiological method of cell destruction. Cellular components are dismantled within the confines of an intact cell membrane, and rapid ingestion by phagocytic cells prevents local inflammation. A variety of genes have now been identified as positive or negative regulators of apoptosis. Transfection experiments and studies of gene cooperation in viral transformation suggest that full cellular transformation requires not only the deregulation of proliferation, but also the inhibition of concomitant apoptosis programs. The regulation of apoptosis is fundamental to hematopoietic homeostasis. Stem cell renewal is continuously counterbalanced by apoptosis in functionally inactive or terminally differentiated cells. Extensive cell death in developing lymphocyte populations ensures that only cells recognizing non-self antigens are released into the periphery, and the finite lifespan of terminally differentiated cells enables the extensive cell turnover demanded by functional aspects of the hematopoietic system. The requirement of each hematopoietic sub-population for a specific sub-set of survival factors, provides a flexible mechanism for dictating the cellular composition of the mature population and for controlling population size. Surplus cell production and apoptosis are therefore normal features of hematopoiesis. The consequences of deregulated apoptosis are severe. Excessive apoptosis in lymphocyte populations plays a major role in the pathogenesis of acquired immunodeficiency syndrome (AIDS), whereas ineffective apoptosis has been associated with the development of inflammation, autoimmunity and hematological malignancies. The identification of various genetic abnormalities which influence apoptosis in leukaemic cells (e.g., mutant p53, Bcr-Abl and over-expression of Bcl-2), suggests that the acquisition of an anti-apoptotic lesions is an important event in the multi-step evolution of hematological malignancies. In addition, the nature of some leukaemias particularly the chronic leukemias, in which the leukemic cells are nonproliferative and long lived, suggests that anti-apoptotic lesions are early events in the pathogenesis of these diseases. It is likely that the utilization of mechanisms to evade apoptosis would facilitate disease progression in all leukemias and contribute to the development of multi-drug resistance. A better understanding of apoptosis mechanisms in hematopoietic cells, and their exploitation by leukemic cells should be useful in the development of improved cytotoxic regimes.
Leukemia | 2002
Karen Keeshan; Thomas G. Cotter; Sharon L. McKenna
Bcr-Abl is a constitutively active tyrosine kinase involved in the development and progression of chronic myeloid leukaemia (CML). It has been demonstrated that Bcr-Abl-positive cells can be uniquely resistant to apoptosis induced by different types of stimuli, but the mechanism by which this is achieved is not defined. In this study we have investigated how cells expressing high expression levels of Bcr-Abl may gain resistance to cytotoxic drugs. We have established cell lines expressing low and high expression levels of Bcr-Abl. Cells expressing elevated Bcr-Abl are resistant to cytotoxic drugs. In drug-sensitive 32D-parental and low Bcr-Abl expressing cells, pro-apoptotic Bcl-2 family members, Bax and Bad translocate from the cytosol to the mitochondrion following a cytotoxic insult. In contrast, high Bcr-Abl expression prevents the early translocation of these pro-apoptotic proteins to the mitochondrion, mitochondrial membrane potential is retained and caspases are inactive. We also demonstrate that IL-3 can contribute to drug resistance in low Bcr-Abl expressing cells, however, independent inhibition of IL-3 activated pathways (PI3K/AKT and Jak/STAT) does not sensitise cells to apoptosis. This study demonstrates that the subcellular translocation of Bax and Bad can be regulated by elevated Bcr-Abl expression and this may be a key event in the abrogation of an apoptotic response following a cytotoxic insult.
American Journal of Hematology | 2011
Lisa C. Crowley; Baukje M. Elzinga; Gerald C. O'Sullivan; Sharon L. McKenna
Although Imatinib has transformed the treatment of chronic myeloid leukemia (CML), it is not curative due to the persistence of resistant cells that can regenerate the disease. We have examined how Bcr‐Abl‐expressing cells respond to two mechanistically different therapeutic agents, etoposide and Imatinib. We also examined Bcr‐Abl expression at low and high levels as elevated expression has been associated with treatment failure. Cells expressing low levels of Bcr‐Abl undergo apoptosis in response to the DNA‐targeting agent (etoposide), whereas high‐Bcr‐Abl‐expressing cells primarily induce autophagy. Autophagic populations engage a delayed nonapoptotic death; however, sufficient cells evade this and repopulate following the withdrawal of the drug. Non‐Bcr‐Abl‐expressing 32D or Ba/F3 cells induce both apoptosis and autophagy in response to etoposide and can recover. Imatinib treatment induces both apoptosis and autophagy in all Bcr‐Abl‐expressing cells and populations rapidly recover. Inhibition of autophagy with ATG7 and Beclin1 siRNA significantly reduced the recovery of Imatinib‐treated K562 cells, indicating the importance of autophagy for the recovery of treated cells. Combination regimes incorporating agents that disrupt Imatinib‐induced autophagy would remain primarily targeted and may improve response to the treatment in CML. Am. J. Hematol., 2011.