Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharon La Fontaine is active.

Publication


Featured researches published by Sharon La Fontaine.


Eukaryotic Cell | 2002

Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii.

Sharon La Fontaine; Jeanette M. Quinn; Stacie S. Nakamoto; M. Dudley Page; Vera Göhre; Jeffrey L. Moseley; Janette Kropat; Sabeeha S. Merchant

ABSTRACT The unicellular green alga Chlamydomonas reinhardtii is a valuable model for studying metal metabolism in a photosynthetic background. A search of the Chlamydomonas expressed sequence tag database led to the identification of several components that form a copper-dependent iron assimilation pathway related to the high-affinity iron uptake pathway defined originally for Saccharomyces cerevisiae. They include a multicopper ferroxidase (encoded by Fox1), an iron permease (encoded by Ftr1), a copper chaperone (encoded by Atx1), and a copper-transporting ATPase. A cDNA, Fer1, encoding ferritin for iron storage also was identified. Expression analysis demonstrated that Fox1 and Ftr1 were coordinately induced by iron deficiency, as were Atx1 and Fer1, although to lesser extents. In addition, Fox1 abundance was regulated at the posttranscriptional level by copper availability. Each component exhibited sequence relationship with its yeast, mammalian, or plant counterparts to various degrees; Atx1 of C. reinhardtii is also functionally related with respect to copper chaperone and antioxidant activities. Fox1 is most highly related to the mammalian homologues hephaestin and ceruloplasmin; its occurrence and pattern of expression in Chlamydomonas indicate, for the first time, a role for copper in iron assimilation in a photosynthetic species. Nevertheless, growth of C. reinhardtii under copper- and iron-limiting conditions showed that, unlike the situation in yeast and mammals, where copper deficiency results in a secondary iron deficiency, copper-deficient Chlamydomonas cells do not exhibit symptoms of iron deficiency. We propose the existence of a copper-independent iron assimilation pathway in this organism.


Journal of Biological Chemistry | 2011

Unification of the Copper(I) Binding Affinities of the Metallo-chaperones Atx1, Atox1, and Related Proteins DETECTION PROBES AND AFFINITY STANDARDS

Zhiguang Xiao; Jens Brose; Sonja Schimo; Susan M. Ackland; Sharon La Fontaine; Anthony G. Wedd

Literature estimates of metal-protein affinities are widely scattered for many systems, as highlighted by the class of metallo-chaperone proteins, which includes human Atox1. The discrepancies may be attributed to unreliable detection probes and/or inconsistent affinity standards. In this study, application of the four CuI ligand probes bicinchoninate, bathocuproine disulfonate, dithiothreitol (Dtt), and glutathione (GSH) is reviewed, and their CuI affinities are re-estimated and unified. Excess bicinchoninate or bathocuproine disulfonate reacts with CuI to yield distinct 1:2 chromatophoric complexes [CuIL2]3− with formation constants β2 = 1017.2 and 1019.8 m−2, respectively. These constants do not depend on proton concentration for pH ≥7.0. Consequently, they are a pair of complementary and stable probes capable of detecting free Cu+ concentrations from 10−12 to 10−19 m. Dtt binds CuI with KD ∼10−15 m at pH 7, but it is air-sensitive, and its CuI affinity varies with pH. The CuI binding properties of Atox1 and related proteins (including the fifth and sixth domains at the N terminus of the Wilson protein ATP7B) were assessed with these probes. The results demonstrate the following: (i) their use permits the stoichiometry of high affinity CuI binding and the individual quantitative affinities (KD values) to be determined reliably via noncompetitive and competitive reactions, respectively; (ii) the scattered literature values are unified by using reliable probes on a unified scale; and (iii) Atox1-type proteins bind CuI with sub-femtomolar affinities, consistent with tight control of labile Cu+ concentrations in living cells.


Journal of Biological Chemistry | 1999

The role of GMXCXXC metal binding sites in the copper-induced redistribution of the Menkes protein

Daniel Strausak; Sharon La Fontaine; Joanne Hill; Stephen D. Firth; Paul J. Lockhart; Julian F. B. Mercer

The Menkes protein (MNK or ATP7A) is a transmembrane, copper-transporting CPX-type ATPase, a subgroup of the extensive family of P-type ATPases. A striking feature of the protein is the presence of six metal binding sites (MBSs) in the N-terminal region with the highly conserved consensus sequence GMXCXXC. MNK is normally located in thetrans-Golgi network (TGN) but has been shown to relocalize to the plasma membrane when cells are cultured in media containing high concentrations of copper. The experiments described in this report test the hypothesis that the six MBSs are required for this copper-induced trafficking of MNK. Site-directed mutagenesis was used to convert both cysteine residues in the conserved MBS motifs to serines. Mutation of MBS 1, MBS 6, and MBSs 1–3 resulted in a molecule that appeared to relocalize normally with copper, but when MBSs 4–6 or MBSs 1–6 were mutated, MNK remained in the TGN, even when cells were exposed to 300 μm copper. Furthermore, the ability of the MNK variants to relocalize corresponded well with their ability to confer copper resistance. To further define the critical motifs, MBS 5 and MBS 6 were mutated, and these changes abolished the response to copper. The region from amino acid 8 to amino acid 485 was deleted, resulting in mutant MNK that lacked 478 amino acids from the N-terminal region, including the first four MBSs. This truncated molecule responded normally to copper. Moreover, when either one of the remaining MBS 5 and MBS 6 was mutated to GMXSXXS, the resulting proteins were localized to the TGN in low copper and relocalized in response to elevated copper. These experiments demonstrated that the deleted N-terminal region from amino acid 8 to amino acid 485 was not essential for copper-induced trafficking and that one MBS close to the membrane channel of MNK was necessary and sufficient for the copper-induced redistribution.


Journal of Biological Chemistry | 1998

Correction of the Copper Transport Defect of Menkes Patient Fibroblasts by Expression of the Menkes and Wilson ATPases

Sharon La Fontaine; Stephen D. Firth; James Camakaris; Anna Englezou; Michael B. Theophilos; Michael J. Petris; Michelle K. Howie; Paul J. Lockhart; Mark Greenough; Hilary Brooks; Roger R. Reddel; Julian F. B. Mercer

Menkes’ disease is a fatal, X-linked, copper deficiency disorder that results from defective copper efflux from intestinal cells and inadequate copper delivery to other tissues, leading to deficiencies of critical copper-dependent enzymes. Wilson’s disease is an autosomally inherited, copper toxicosis disorder resulting from defective biliary excretion of copper, which leads to copper accumulation in the liver. TheATP7A and ATP7B genes that are defective in patients with Menkes’ and Wilson’s diseases, respectively, encode transmembrane, P-type ATPase proteins (ATP7A or MNK and ATP7B or WND, respectively) that function to translocate copper across cellular membranes. In this study, the cDNAs derived from a normal humanATP7A gene and the murine ATP7B homologue,Atp7b, were separately transfected into an immortalized fibroblast cell line obtained from a Menkes’ disease patient. Both MNK and WND expressed from plasmid constructs were able to correct the copper accumulation and copper retention phenotype of these cells. However, the two proteins responded differently to elevated extracellular copper levels. Although MNK showed copper-induced trafficking from the trans-Golgi network to the plasma membrane, in the same cell line the intracellular location of WND did not appear to be affected by elevated copper.


Biochemical Journal | 2008

Intracellular copper deficiency increases amyloid-β secretion by diverse mechanisms

Michael A. Cater; Kelly T. McInnes; Qiao-Xin Li; Irene Volitakis; Sharon La Fontaine; Julian F. B. Mercer; Ashley I. Bush

In Alzheimers disease there is abnormal brain copper distribution, with accumulation of copper in amyloid plaques and a deficiency of copper in neighbouring cells. Excess copper inhibits Abeta (amyloid beta-peptide) production, but the effects of deficiency have not yet been determined. We therefore studied the effects of modulating intracellular copper levels on the processing of APP (amyloid precursor protein) and the production of Abeta. Human fibroblasts genetically disposed to copper accumulation secreted higher levels of sAPP (soluble APP ectodomain)alpha into their medium, whereas fibroblasts genetically manipulated to be profoundly copper deficient secreted predominantly sAPPbeta and produced more amyloidogenic beta-cleaved APP C-termini (C99). The level of Abeta secreted from copper-deficient fibroblasts was however regulated and limited by alpha-secretase cleavage. APP can be processed by both alpha- and beta-secretase, as copper-deficient fibroblasts secreted sAPPbeta exclusively, but produced primarily alpha-cleaved APP C-terminal fragments (C83). Copper deficiency also markedly reduced the steady-state level of APP mRNA whereas the APP protein level remained constant, indicating that copper deficiency may accelerate APP translation. Copper deficiency in human neuroblastoma cells significantly increased the level of Abeta secretion, but did not affect the cleavage of APP. Therefore copper deficiency markedly alters APP metabolism and can elevate Abeta secretion by either influencing APP cleavage or by inhibiting its degradation, with the mechanism dependent on cell type. Overall our results suggest that correcting brain copper imbalance represents a relevant therapeutic target for Alzheimers disease.


Veterinary Microbiology | 1993

Detection of Dichelobacter nodosus using species-specific oligonucleotides as PCR primers.

Sharon La Fontaine; J.R. Egerton; Julian I. Rood

Dichelobacter nodosus is an essential causative agent of ovine footrot, a disease of major economic significance. Four oligonucleotides complementary to variable regions of the 16S rRNA of D. nodosus were identified, synthesized and tested for their specificity and sensitivity as probes for the detection of D. nodosus. In hybridization reactions using total RNA as the target nucleic acid, three probes were found to be both sensitive and species-specific. When these probes were used as primers in PCR reactions, on both purified D. nodosus DNA and whole cells, the sensitivity of detection was increased by several orders of magnitude. Using PCR, it was possible to detect the presence of D. nodosus by direct examination of lesion material from footrot infected sheep.


Journal of Biological Chemistry | 2006

Copper-dependent interaction of dynactin subunit p62 with the N terminus of ATP7B but not ATP7A.

Chris Lim; Michael A. Cater; Julian F. B. Mercer; Sharon La Fontaine

The P-type ATPase affected in Wilson disease, ATP7B, is a key liver protein required to regulate and maintain copper homeostasis. When hepatocytes are exposed to elevated copper levels, ATP7B traffics from the trans-Golgi network toward the biliary canalicular membrane to excrete excess copper into bile. The N-terminal region of ATP7B contains six metal-binding sites (MBS), each with the copper-binding motif MXCXXC. These sites are required for the activity and copper-regulated intracellular redistribution of ATP7B. Two proteins are known to interact with the ATP7B N-terminal region: the copper chaperone ATOX1 that delivers copper to ATP7B, and COMMD1 (MURR1) that is potentially involved in vesicular copper sequestration. To identify additional proteins that interact with ATP7B and hence are involved in copper homeostasis, a yeast two-hybrid approach was employed to screen a human liver cDNA library. The dynactin subunit p62 (dynactin 4; DCTN4) was identified as an interacting partner, and this interaction was confirmed by co-immunoprecipitation from mammalian cells. The dynactin complex binds cargo, such as vesicles and organelles, to cytoplasmic dynein for retrograde microtubule-mediated trafficking and could feasibly be involved in the copper-regulated trafficking of ATP7B. The ATP7B/p62 interaction required copper, the metal-binding CXXC motifs, and the region between MBS 4 and MBS 6 of ATP7B. The p62 subunit did not interact with the related copper ATPase, ATP7A. We propose that the ATP7B interaction with p62 is a key component of the copper-induced trafficking pathway that delivers ATP7B to subapical vesicles of hepatocytes for the removal of excess copper into bile.


Frontiers in Aging Neuroscience | 2013

Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis

Jonathon Telianidis; Ya Hui Hung; Stephanie Materia; Sharon La Fontaine

Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer’s, Parkinson’s, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.


Journal of Biological Chemistry | 2010

Role of Glutaredoxin1 and Glutathione in Regulating the Activity of the Copper-transporting P-type ATPases, ATP7A and ATP7B

William Singleton; Kelly T. McInnes; Michael A. Cater; Wendy R. Winnall; Ross McKirdy; Yu Yu; Philip E. Taylor; Bi-Xia Ke; Des R. Richardson; Julian F. B. Mercer; Sharon La Fontaine

The copper-transporting P-type ATPases (Cu-ATPases), ATP7A and ATP7B, are essential for the regulation of intracellular copper homeostasis. In this report we describe new roles for glutathione (GSH) and glutaredoxin1 (GRX1) in Cu homeostasis through their regulation of Cu-ATPase activity. GRX1 is a thiol oxidoreductase that catalyzes the reversible reduction of GSH-mixed disulfides to their respective sulfhydryls (deglutathionylation). Here, we demonstrated that glutathionylation of the Cu-ATPases and their interaction with GRX1 were affected by alterations in Cu levels. The data support our hypothesis that the Cu-ATPases serve as substrates for Cu-dependent GRX1-mediated deglutathionylation. This in turn liberates the Cu-ATPase cysteinyl thiol groups for Cu binding and transport. GSH depletion experiments led to reversible inhibition of the Cu-ATPases that correlated with effects on intracellular Cu levels and GRX1 activity. Finally, knockdown of GRX1 expression resulted in an increase in intracellular Cu accumulation. Together, these data directly implicate GSH and GRX1 with important new roles in redox regulation of the Cu-ATPases, through modulation of Cu binding by the Cu-ATPase cysteine motifs.


Biochemical Journal | 2007

Copper binding to the N-terminal metal-binding sites or the CPC motif is not essential for copper-induced trafficking of the human Wilson protein (ATP7B)

Michael A. Cater; Sharon La Fontaine; Julian F. B. Mercer

The Wilson protein (ATP7B) is a copper-translocating P-type ATPase that mediates the excretion of excess copper from hepatocytes into bile. Excess copper causes the protein to traffic from the TGN (trans-Golgi network) to subapical vesicles. Using site-directed mutagenesis, mutations known or predicted to abrogate catalytic activity (copper translocation) were introduced into ATP7B and the effect of these mutations on the intracellular trafficking of the protein was investigated. Mutation of the critical aspartic acid residue in the phosphorylation domain (DKTGTIT) blocked copper-induced redistribution of ATP7B from the TGN, whereas mutation of the phosphatase domain [TGE (Thr-Gly-Glu)] trapped ATP7B at cytosolic vesicular compartments. Our findings demonstrate that ATP7B trafficking is regulated with its copper-translocation cycle, with cytosolic vesicular localization associated with the acyl-phosphate intermediate. In addition, mutation of the six N-terminal metal-binding sites and/or the trans-membrane CPC (Cys-Pro-Cys) motif did not suppress the constitutive vesicular localization of the ATP7B phosphatase domain mutant. These results suggested that copper co-ordination by these sites is not essential for trafficking. Importantly, copper-chelation studies with these mutants clearly demonstrated a requirement for copper in ATP7B trafficking, suggesting the presence of an additional copper-binding site(s) within the protein. The results presented in this report significantly advance our understanding of the regulatory mechanism that links copper-translocation activity with copper-induced intracellular trafficking of ATP7B, which is central to hepatic and hence systemic copper homoeostasis.

Collaboration


Dive into the Sharon La Fontaine's collaboration.

Top Co-Authors

Avatar

Julian F. B. Mercer

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley I. Bush

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian F. B. Mercer

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge