Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharon Tong is active.

Publication


Featured researches published by Sharon Tong.


Journal of Medicinal Chemistry | 2014

Omarigliptin (MK-3102): A Novel Long-Acting DPP-4 Inhibitor for Once-Weekly Treatment of Type 2 Diabetes.

Tesfaye Biftu; Ranabir SinhaRoy; Ping Chen; Xiaoxia Qian; Dennis Feng; Jeffrey T. Kuethe; Giovanna Scapin; Ying Duo Gao; Youwei Yan; Davida Krueger; Annette Bak; George J. Eiermann; Jiafang He; Jason M. Cox; Jacqueline D. Hicks; Kathy Lyons; Huaibing He; Gino Salituro; Sharon Tong; Sangita B. Patel; George A. Doss; Aleksandr Petrov; Joe C. Wu; Shiyao Sherrie Xu; Charles Sewall; Xiaoping Zhang; Bei Zhang; Nancy A. Thornberry; Ann E. Weber

In our effort to discover DPP-4 inhibitors with added benefits over currently commercially available DPP-4 inhibitors, MK-3102 (omarigliptin), was identified as a potent and selective dipeptidyl peptidase 4 (DPP-4) inhibitor with an excellent pharmacokinetic profile amenable for once-weekly human dosing and selected as a clinical development candidate. This manuscript summarizes the mechanism of action, scientific rationale, medicinal chemistry, pharmacokinetic properties, and human efficacy data for omarigliptin, which is currently in phase 3 clinical development.


Bioorganic & Medicinal Chemistry Letters | 2001

The discovery of sulfonylated dipeptides as Potent VLA-4 antagonists

William K. Hagmann; Philippe L. Durette; Thomas J. Lanza; Nancy J. Kevin; Stephen E. de Laszlo; Ihor E. Kopka; David N. Young; Plato A. Magriotis; Bing Li; Linus S. Lin; Ginger X. Yang; Theodore M. Kamenecka; Linda L. Chang; Jonathan E. Wilson; Malcolm Maccoss; Sander G. Mills; Gail Van Riper; Ermengilda McCauley; Linda A. Egger; Usha Kidambi; Kathryn A. Lyons; Stella H. Vincent; Ralph A. Stearns; Adria Colletti; Johannes Teffera; Sharon Tong; Judy Fenyk-Melody; Karen Owens; Dorothy Levorse; Philip Kim

Directed screening of a carboxylic acid-containing combinatorial library led to the discovery of potent inhibitors of the integrin VLA-4. Subsequent optimization by solid-phase synthesis afforded a series of sulfonylated dipeptide inhibitors with structural components that when combined in a single hybrid molecule gave a sub-nanomolar inhibitor as a lead for medicinal chemistry. Preliminary metabolic studies led to the discovery of substituted biphenyl derivatives with low picomolar activities. SAR and pharmacokinetic characterization of this series are presented.


Bioorganic & Medicinal Chemistry Letters | 2002

N-Aryl 2,6-Dimethoxybiphenylalanine Analogues as VLA-4 Antagonists

George Doherty; Theodore M. Kamenecka; Ermenegilda McCauley; Gail Van Riper; Richard A. Mumford; Sharon Tong; William K. Hagmann

A series of N-arylated phenylalanine derivatives has been synthesized and has been shown to be potent inhibitors of the integrin VLA-4. N-phenyl and N-heteroaryl derivatives with hydrogen bond acceptors in the meta position demonstrated low nanomolar activity against VLA-4.


Bioorganic & Medicinal Chemistry Letters | 2002

N-(Arylacetyl)-biphenylalanines as Potent VLA-4 Antagonists

Bing Li; Stephen E. de Laszlo; Theodore M. Kamenecka; Ihor E. Kopka; Philippe L. Durette; Thomas J. Lanza; Malcolm Maccoss; Sharon Tong; Richard A. Mumford; Ermengilda McCauley; Gail Van Riper; John A. Schmidt; William K. Hagmann

A series of potent N-(aralkyl-, arylcycloalkyl-, and heteroaryl-acyl)-4-biphenylalanine VLA-4 antagonists was prepared by rapid analogue methods using solid-phase chemistry. Further optimization led to several highly potent compounds (IC(50) <1 nM). Evaluation of rat pharmacokinetic revealed generally high clearance.


Bioorganic & Medicinal Chemistry Letters | 2002

Substituted N-(3,5-dichlorobenzenesulfonyl)-L-prolyl-phenylalanine analogues as potent VLA-4 antagonists.

Ihor E. Kopka; David N. Young; Linus S. Lin; Richard A. Mumford; Plato A. Magriotis; Malcolm Maccoss; Sander G. Mills; Gail Van Riper; Ermengilda McCauley; Linda E Egger; Usha Kidambi; John A. Schmidt; Kathryn A. Lyons; Ralph A. Stearns; Stella H. Vincent; Adria Colletti; Zhen Wang; Sharon Tong; Junying Wang; Song Zheng; Karen Owens; Dorothy Levorse; William K. Hagmann

A series of substituted N-(3,5-dichlorobenzenesulfonyl)-L-prolyl- and alpha-methyl-L-prolyl-phenylalanine derivatives was prepared as VLA-4/VCAM antagonists. The compounds showed excellent potency with a wide variety of neutral, polar, electron withdrawing or donating groups on the phenylalanine ring (IC50 approximately 1 nM). Heteroaryl ring substitution for phenylalanine was also well tolerated. Pharmacokinetic studies in rat were performed on a representative set of compounds in both series.


Bioorganic & Medicinal Chemistry Letters | 2002

Substituted tetrahydrofuroyl-1-phenylalanine derivatives as potent and specific VLA-4 antagonists.

George Doherty; Ginger X. Yang; Edite Borges; Linda L. Chang; Malcolm Maccoss; Sharon Tong; Usha Kidambi; Linda A. Egger; Ermenegilda McCauley; Gail Van Riper; Richard A. Mumford; John A. Schmidt; William K. Hagmann

A series of substituted tetrahydrofuroyl-1-phenylalanine derivatives was prepared and evaluated as VLA-4 antagonists. Substitution of the alpha carbon of the tetrahydrofuran with aryl groups increased the specificity for VLA-4 versus alpha(4)beta(7) while amide substitution increased the potency of the series without increasing the specificity. Substitution of the beta carbon of the tetrahydrofuran with keto or amino groups slightly improved the specificity for VLA-4 versus alpha(4)beta(7) but with a significant loss in binding affinity for VLA-4.


Bioorganic & Medicinal Chemistry Letters | 2003

N-isonicotinoyl-(L)-4-aminophenylalanine derivatives as tight binding VLA-4 antagonists.

George Doherty; Ginger X. Yang; Edite Borges; Sharon Tong; Ermengilda McCauley; Kelly M. Treonz; Gail Van Riper; Stephen Pacholok; Qian Si; Gloria C. Koo; Kashmira Shah; Richard A. Mumford; William K. Hagmann

A series of isonicotinoyl-(L)-aminophenylalanine derivatives was prepared and evaluated as VLA-4 antagonists. These compounds exhibit subnanomolar binding affinity to VLA-4 and significant off-rates. The interplay between off-rate, protein binding and pharmacokinetics is discussed.


ACS Medicinal Chemistry Letters | 2015

Discovery of MK-1421, a Potent, Selective sstr3 Antagonist, as a Development Candidate for Type 2 Diabetes

Shrenik K. Shah; Shuwen He; Liangqin Guo; Quang Truong; Hongbo Qi; Wu Du; Zhong Lai; Jian Liu; Tianying Jian; Qingmei Hong; Peter H. Dobbelaar; Zhixiong Ye; Edward C. Sherer; Zhe Feng; Yang Yu; Frederick Wong; Koppara Samuel; Maria Madiera; Bindhu V. Karanam; Vijay Bhasker G. Reddy; Stan Mitelman; Sharon Tong; Gary G. Chicchi; Kwei-Lan Tsao; Dorina Trusca; Yue Feng; Margaret Wu; Qing Shao; Maria E. Trujillo; George J. Eiermann

The imidazolyl-tetrahydro-β-carboline class of sstr3 antagonists have demonstrated efficacy in a murine model of glucose excursion and may have potential as a treatment for type 2 diabetes. The first candidate in this class caused unacceptable QTc interval prolongation in oral, telemetrized cardiovascular (CV) dogs. Herein, we describe our efforts to identify an acceptable candidate without CV effects. These efforts resulted in the identification of (1R,3R)-3-(4-(5-fluoropyridin-2-yl)-1H-imidazol-2-yl)-1-(1-ethyl-pyrazol-4-yl)-1-(3-methyl-1,3,4-oxadiazol-3H-2-one-5-yl)-2,3,4,9-tetrahydro-1H-β-carboline (17e, MK-1421).


ACS Medicinal Chemistry Letters | 2012

The Discovery of MK-4256, a Potent SSTR3 Antagonist as a Potential Treatment of Type 2 Diabetes

Shuwen He; Zhixiong Ye; Quang Truong; Shrenik K. Shah; Wu Du; Liangqin Guo; Peter H. Dobbelaar; Zhong Lai; Jian Liu; Tianying Jian; Hongbo Qi; Raman K. Bakshi; Qingmei Hong; James Dellureficio; Alexander Pasternak; Zhe Feng; Reynalda Dejesus; Lihu Yang; Mikhail Reibarkh; Scott A. Bradley; Mark A. Holmes; Richard G. Ball; Rebecca T. Ruck; Mark A. Huffman; Frederick Wong; Koppara Samuel; Vijay Bhasker G. Reddy; Stan Mitelman; Sharon Tong; Gary G. Chicchi

A structure-activity relationship study of the imidazolyl-β-tetrahydrocarboline series identified MK-4256 as a potent, selective SSTR3 antagonist, which demonstrated superior efficacy in a mouse oGTT model. MK-4256 reduced glucose excursion in a dose-dependent fashion with maximal efficacy achieved at doses as low as 0.03 mg/kg po. As compared with glipizide, MK-4256 showed a minimal hypoglycemia risk in mice.


Bioorganic & Medicinal Chemistry Letters | 2002

N-Aryl-prolyl-dipeptides as potent antagonists of VLA-4

Theodore M. Kamenecka; Thomas J. Lanza; Stephen E. de Laszlo; Bing Li; Ermengilda McCauley; Gail Van Riper; Linda A. Egger; Usha Kidambi; Richard A. Mumford; Sharon Tong; Malcolm Maccoss; John A. Schmidt; William K. Hagmann

The design, synthesis, and biological evaluation of N-arylprolyl-dipeptide derivatives as small molecule VLA-4 antagonists is described. Potency against VLA-4 and alpha(4)beta(7) and rat pharmacokinetic evaluation revealed some advantages over the related N-(arylsulfonyl)-prolyl-dipeptide analogues.

Researchain Logo
Decentralizing Knowledge