Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharon Yagur-Kroll is active.

Publication


Featured researches published by Sharon Yagur-Kroll.


Toxicological Sciences | 2014

Mixtures of Chemical Pollutants at European Legislation Safety Concentrations: How Safe Are They?

Raquel N. Carvalho; Augustine Arukwe; Selim Ait-Aissa; Anne Bado-Nilles; Stefania Balzamo; Anders Baun; Shimshon Belkin; Ludek Blaha; François Brion; Daniela Conti; Nicolas Creusot; Yona J. Essig; Valentina Elisabetta Viviana Ferrero; Vesna Flander-Putrle; Maria Fürhacker; Regina Grillari-Voglauer; Christer Hogstrand; Adam Jonáš; Joubert Banjop Kharlyngdoh; Robert Loos; Anne-Katrine Lundebye; Carina Modig; Per-Erik Olsson; Smitha Pillai; Natasa Polak; Monica Potalivo; Wilfried Sanchez; Andrea Schifferli; Kristin Schirmer; Susanna Sforzini

The risk posed by complex chemical mixtures in the environment to wildlife and humans is increasingly debated, but has been rarely tested under environmentally relevant scenarios. To address this issue, two mixtures of 14 or 19 substances of concern (pesticides, pharmaceuticals, heavy metals, polyaromatic hydrocarbons, a surfactant, and a plasticizer), each present at its safety limit concentration imposed by the European legislation, were prepared and tested for their toxic effects. The effects of the mixtures were assessed in 35 bioassays, based on 11 organisms representing different trophic levels. A consortium of 16 laboratories was involved in performing the bioassays. The mixtures elicited quantifiable toxic effects on some of the test systems employed, including i) changes in marine microbial composition, ii) microalgae toxicity, iii) immobilization in the crustacean Daphnia magna, iv) fish embryo toxicity, v) impaired frog embryo development, and vi) increased expression on oxidative stress-linked reporter genes. Estrogenic activity close to regulatory safety limit concentrations was uncovered by receptor-binding assays. The results highlight the need of precautionary actions on the assessment of chemical mixtures even in cases where individual toxicants are present at seemingly harmless concentrations.


Analytical and Bioanalytical Chemistry | 2011

Upgrading bioluminescent bacterial bioreporter performance by splitting the lux operon

Sharon Yagur-Kroll; Shimshon Belkin

AbstractBioluminescent bacterial bioreporters harbor a fusion of bacterial bioluminescence genes (luxCDABE), acting as the reporting element, to a stress-response promoter, serving as the sensing element. Upon exposure to conditions that activate the promoter, such as an environmental stress or the presence of an inducing chemical, the promoter::reporter fusion generates a dose-dependent bioluminescent signal. In order to improve bioluminescent bioreporter performance we have split the luxCDABE genes of Photorhabdus luminescens into two smaller functional units: luxAB, that encode for the luciferase enzyme, which catalyzes the luminescence reaction, and luxCDE that encode for the enzymatic complex responsible for synthesis of the reaction’s substrate, a long-chain aldehyde. The expression of each subunit was put under the control of either an inducible stress-responsive promoter or a synthetic constitutive promoter, and different combinations of the two units were tested for their response to selected chemicals in Escherichia coli. In all cases tested, the split combinations proved to be superior to the native luxCDABE configuration, suggesting an improved efficiency in the transcription and/or translation of two small gene units instead of a larger one with the same genes. The best combination was that of an inducible luxAB and a constitutive luxCDE, indicating that aldehyde availability is limited when the five genes are expressed together in E. coli, and demonstrating that improved biosensor performance may be achieved by rearrangement of the lux operon genes. FigureSplitting the Photorhabdus luminescens luxCDABE genes into two independently controlled units in E. coli dramatically enhaced microbial bioreporter performance


Microbial Biotechnology | 2010

Strategies for enhancing bioluminescent bacterial sensor performance by promoter region manipulation

Sharon Yagur-Kroll; Benny Bilic; Shimshon Belkin

Bioluminescent bacterial sensors are based upon the fusion of bacterial bioluminescence (lux) genes, acting as a reporter element, to selected bacterial stress‐response gene promoters. Depending upon the nature of the promoter, the resulting constructs react to diverse types of environmental stress, including the presence of toxic chemicals, by dose‐dependant light emission. Two bacterial sensors, harbouring sulA::luxCDABE and grpE::luxCDABE fusions, activated by the model chemicals nalidixic acid (NA) and ethanol, respectively, were subjected to molecular manipulations of the promoter region, in order to enhance the intensity and speed of their response and lower their detection thresholds. By manipulating the length of the promoter‐containing segment (both promoters), by introducing random or specific mutations in the promoter sequence or by duplicating the promoter sequence (sulA only), major improvements in sensor performance were obtained. Improvements included significantly enhanced sensitivity, earlier response times and an increase in signal intensity. The general approaches described herein may be of general applicability for optimizing bacterial sensor performance, regardless of the sensing or reporting elements employed.


Environmental Science & Technology | 2011

Online Monitoring of Water Toxicity by Use of Bioluminescent Reporter Bacterial Biochips

Tal Elad; Ronen Almog; Sharon Yagur-Kroll; Klimentiy Levkov; Sahar Melamed; Yosi Shacham-Diamand; Shimshon Belkin

We describe a flow-through biosensor for online continuous water toxicity monitoring. At the heart of the device are disposable modular biochips incorporating agar-immobilized bioluminescent recombinant reporter bacteria, the responses of which are probed by single-photon avalanche diode detectors. To demonstrate the biosensor capabilities, we equipped it with biochips harboring both inducible and constitutive reporter strains and exposed it to a continuous water flow for up to 10 days. During these periods we challenged the biosensor with 2-h pulses of water spiked with model compounds representing different classes of potential water pollutants, as well as with a sample of industrial wastewater. The biosensor reporter panel detected all simulated contamination events within 0.5-2.5 h, and its response was indicative of the nature of the contaminating chemicals. We believe that a biosensor of the proposed design can be integrated into future water safety and security networks, as part of an early warning system against accidental or intentional water pollution by toxic chemicals.


Applied Microbiology and Biotechnology | 2014

Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene

Sharon Yagur-Kroll; Chaim Lalush; Rachel Rosen; Neta Bachar; Yaara Moskovitz; Shimshon Belkin

The primary explosive found in most land mines, 2,4,6-trinitrotoluene (2,4,6-TNT), is often accompanied by 2,4-dinitrotoluene (2,4-DNT) and 1,3-dinitrobenzene (1,3-DNB) impurities. The latter two compounds, being more volatile, have been reported to slowly leak through land mine covers and permeate the soil under which they are located, thus serving as potential indicators for buried land mines. We report on the construction of genetically engineered Escherichia coli bioreporter strains for the detection of these compounds, based on a genetic fusion between two gene promoters, yqjF and ybiJ, to either the green fluorescent protein gene GFPmut2 or to Photorhabdus luminescens bioluminescence luxCDABE genes. These two gene promoters were identified by exposing to 2,4-DNT a comprehensive library of about 2,000 E. coli reporter strains, each harboring a different E. coli gene promoter controlling a fluorescent protein reporter gene. Both reporter strains detected 2,4-DNT in an aqueous solution as well as in vapor form or when buried in soil. Performance of the yqjF-based sensor was significantly improved in terms of detection threshold, response time, and signal intensity, following two rounds of random mutagenesis in the promoter region. Both yqjF-based and ybiJ-based reporters were also induced by 2,4,6-TNT and 1,3-DNB. It was further demonstrated that both 2,4,6-TNT and 2,4-DNT are metabolized by E. coli and that the actual induction of both yqjF and ybiJ is caused by yet unidentified degradation products. This is the first demonstration of an E. coli whole-cell sensor strain for 2,4-DNT and 2,4,6-TNT, constructed using its own endogenous sensing elements.


Microbial Biotechnology | 2009

Bacterial genotoxicity bioreporters.

Alva Biran; Sharon Yagur-Kroll; Rami Pedahzur; Sebastian Buchinger; Georg Reifferscheid; Hadar Ben-Yoav; Yosi Shacham-Diamand; Shimshon Belkin

Ever since the introduction of the Salmonella typhimurium mammalian microsome mutagenicity assay (the ‘Ames test’) over three decades ago, there has been a constant development of additional genotoxicity assays based upon the use of genetically engineered microorganisms. Such assays rely either on reversion principles similar to those of the Ames test, or on promoter–reporter fusions that generate a quantifiable dose‐dependent signal in the presence of potential DNA damaging compounds and the induction of repair mechanisms; the latter group is the subject of the present review. Some of these assays were only briefly described in the scientific literature, whereas others have been developed all the way to commercial products. Out of these, only one, the umu‐test, has been fully validated and ISO‐ and OECD standardized. Here we review the main directions undertaken in the construction and testing of bacterial‐based genotoxicity bioassays, including the attempts to incorporate at least a partial metabolic activation capacity into the molecular design. We list the genetic modifications introduced into the tester strains, compare the performance of the different assays, and briefly describe the first attempts to incorporate such bacterial reporters into actual genotoxicity testing devices.


Microbial Biotechnology | 2012

A bacterial reporter panel for the detection and classification of antibiotic substances

Sahar Melamed; Chaim Lalush; Tal Elad; Sharon Yagur-Kroll; Shimshon Belkin; Rami Pedahzur

The ever‐growing use of pharmaceutical compounds, including antibacterial substances, poses a substantial pollution load on the environment. Such compounds can compromise water quality, contaminate soils, livestock and crops, enhance resistance of microorganisms to antibiotic substances, and hamper human health. We report the construction of a novel panel of genetically engineered Escherichia coli reporter strains for the detection and classification of antibiotic substances. Each of these strains harbours a plasmid that carries a fusion of a selected gene promoter to bioluminescence (luxCDABE) reporter genes and an alternative tryptophan auxotrophy‐based non‐antibiotic selection system. The bioreporter panel was tested for sensitivity and responsiveness to diverse antibiotic substances by monitoring bioluminescence as a function of time and of antibiotic concentrations. All of the tested antibiotics were detected by the panel, which displayed different response patterns for each substance. These unique responses were analysed by several algorithms that enabled clustering the compounds according to their functional properties, and allowed the classification of unknown antibiotic substances with a high degree of accuracy and confidence.


Journal of Biological Chemistry | 2005

Dynamic membrane topology of the Escherichia coli β-glucoside transporter BglF

Sharon Yagur-Kroll; Orna Amster-Choder

The Escherichia coli BglF protein, a permease of the phosphoenolpyruvate-dependent phosphotransferase system, catalyzes transport and phosphorylation of β-glucosides. In addition, BglF regulates bgl operon expression by controlling the activity of the transcriptional regulator BglG via reversible phosphorylation. BglF is composed of three domains; one is hydrophobic, which presumably forms the sugar translocation channel. We studied the topology of this domain by Cys-replacement mutagenesis and chemical modification by thiol reagents. Most Cys substitutions were well tolerated, as demonstrated by the ability of the mutant proteins to catalyze BglF activities. Our results suggest that the membrane domain contains eight transmembrane helices and an alleged cytoplasmic loop that contains two additional helices. The latter region forms a dynamic structure, as evidenced by the alternation of residues near its ends between faced-in and faced-out states. We suggest that this region, together with the two transmembrane helices encompassing it, forms the sugar translocation channel. BglF periplasmic loops are close to the membrane, the first being a reentrant loop. This is the first systematic topological study carried out with an intact phosphotransferase system permease and the first demonstration of a reentrant loop in this group of proteins.


Journal of Biological Chemistry | 2005

Dynamic membrane topology of the E. coli β-glucoside transporter BglF

Sharon Yagur-Kroll; Orna Amster-Choder

The Escherichia coli BglF protein, a permease of the phosphoenolpyruvate-dependent phosphotransferase system, catalyzes transport and phosphorylation of β-glucosides. In addition, BglF regulates bgl operon expression by controlling the activity of the transcriptional regulator BglG via reversible phosphorylation. BglF is composed of three domains; one is hydrophobic, which presumably forms the sugar translocation channel. We studied the topology of this domain by Cys-replacement mutagenesis and chemical modification by thiol reagents. Most Cys substitutions were well tolerated, as demonstrated by the ability of the mutant proteins to catalyze BglF activities. Our results suggest that the membrane domain contains eight transmembrane helices and an alleged cytoplasmic loop that contains two additional helices. The latter region forms a dynamic structure, as evidenced by the alternation of residues near its ends between faced-in and faced-out states. We suggest that this region, together with the two transmembrane helices encompassing it, forms the sugar translocation channel. BglF periplasmic loops are close to the membrane, the first being a reentrant loop. This is the first systematic topological study carried out with an intact phosphotransferase system permease and the first demonstration of a reentrant loop in this group of proteins.


Scientific Reports | 2015

Escherichia [corrected] coli ribose binding protein based bioreporters revisited.

Artur Reimer; Sharon Yagur-Kroll; Shimshon Belkin; Shantanu Roy; Jan Roelof van der Meer

Bioreporter bacteria, i.e., strains engineered to respond to chemical exposure by production of reporter proteins, have attracted wide interest because of their potential to offer cheap and simple alternative analytics for specified compounds or conditions. Bioreporter construction has mostly exploited the natural variation of sensory proteins, but it has been proposed that computational design of new substrate binding properties could lead to completely novel detection specificities at very low affinities. Here we reconstruct a bioreporter system based on the native Escherichia coli ribose binding protein RbsB and one of its computationally designed variants, reported to be capable of binding 2,4,6-trinitrotoluene (TNT). Our results show in vivo reporter induction at 50 nM ribose, and a 125 nM affinity constant for in vitro ribose binding to RbsB. In contrast, the purified published TNT-binding variant did not bind TNT nor did TNT cause induction of the E. coli reporter system.

Collaboration


Dive into the Sharon Yagur-Kroll's collaboration.

Top Co-Authors

Avatar

Shimshon Belkin

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Aharon J. Agranat

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Yossef Kabessa

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Tal Elad

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Yosi Shacham-Diamand

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Sahar Melamed

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Victor Korouma

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

A. Nussinovitch

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Benjamin Shemer

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Ofer Bar-On

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge