Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shasha Rao is active.

Publication


Featured researches published by Shasha Rao.


Journal of Controlled Release | 2013

Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38

Vaskor Bala; Shasha Rao; Ben J. Boyd; Clive A. Prestidge

SN38 (7-ethyl-10-hydroxy camptothecin) is a prominent and efficacious anticancer agent. It is poorly soluble in both water and pharmaceutically approved solvents; therefore, the direct formulation of SN38 in solution form is limited. Currently, the water soluble prodrug of SN38, irinotecan (CPT-11), is formulated as a low pH solution and is approved for chemotherapy. However, CPT-11, along with most other water-soluble prodrugs shows unpredictable inter-patient conversion to SN38 in vivo, instability in the physiological environment and variable dose-related toxicities. More recently, macromolecular prodrugs (i.e. EZN-2208, IMMU-130) and nanomedicine formulations (i.e. nanoemulsions, polymeric micelles, lipid nanocapsule/nanoparticle, and liposomes) of SN38 have been investigated for improved delivery to cancer cells and tissues. Specifically, these carriers can take advantage of the EPR effect to direct drug preferentially to tumour tissues, thereby substantially improving efficacy and minimising side effects. Furthermore, oral delivery has been shown to be possible in preclinical results using nanomedicine formulations (i.e. dendrimers, lipid nanocapsules, polymeric micelles). This review summarizes the recent advances for the delivery of SN38 with a focus on macromolecular prodrugs and nanomedicines.


Pharmaceutical Research | 2013

Transforming Lipid-Based Oral Drug Delivery Systems into Solid Dosage Forms: An Overview of Solid Carriers, Physicochemical Properties, and Biopharmaceutical Performance

Angel Tan; Shasha Rao; Clive A. Prestidge

ABSTRACTThe diversity of lipid excipients available commercially has enabled versatile formulation design of lipid-based drug delivery systems for enhancing the oral absorption of poorly water-soluble drugs, such as emulsions, microemulsions, micelles, liposomes, niosomes and various self-emulsifying systems. The transformation of liquid lipid-based systems into solid dosage forms has been investigated for several decades, and has recently become a core subject of pharmaceutical research as solidification is regarded as viable means for stabilising lipid colloidal systems while eliminating stringent processing requirements associated with liquid systems. This review describes the types of pharmaceutical grade excipients (silica nanoparticle/microparticle, polysaccharide, polymer and protein-based materials) used as solid carriers and the current state of knowledge on the liquid-to-solid conversion approaches. Details are primarily focused on the solid-state physicochemical properties and redispersion capacity of various dry lipid-based formulations, and how these relate to the in vitro drug release and solubilisation, lipid carrier digestion and cell permeation performances. Numerous in vivo proof-of-concept studies are presented to highlight the viability of these dry lipid-based formulations. This review is significant in directing future research work in fostering translation of dry lipid-based formulations into clinical applications.


PLOS ONE | 2014

Liposome-encapsulated ISMN: a novel nitric oxide-based therapeutic agent against Staphylococcus aureus biofilms.

Camille Jardeleza; Shasha Rao; Benjamin Thierry; Pratik Gajjar; Sarah Vreugde; Clive A. Prestidge; Peter-John Wormald

Background Staphylococcus aureus in its biofilm form has been associated with recalcitrant chronic rhinosinusitis with significant resistance to conventional therapies. This study aims to determine if liposomal-encapsulation of a precursor of the naturally occurring antimicrobial nitric oxide (NO) enhances its desired anti-biofilm effects against S. aureus, in the hope that improving its efficacy can provide an effective topical agent for future clinical use. Methodology S. aureus ATCC 25923 biofilms were grown in-vitro using the Minimum Biofilm Eradication Concentration (MBEC) device and exposed to 3 and 60 mg/mL of the NO donor isosorbide mononitrate (ISMN) encapsulated into different anionic liposomal formulations based on particle size (unilamellar ULV, multilamellar MLV) and lipid content (5 and 25 mM) at 24 h and 5 min exposure times. Biofilms were viewed using Live-Dead Baclight stain and confocal scanning laser microscopy and quantified using the software COMSTAT2. Results At 3 and 60 mg/mL, ISMN-ULV liposomes had comparable and significant anti-biofilm effects compared to untreated control at 24 h exposure (p = 0.012 and 0.02 respectively). ULV blanks also had significant anti-biofilm effects at both 24 h and 5 min exposure (p = 0.02 and 0.047 respectively). At 5 min exposure, 60 mg/mL ISMN-MLV liposomes appeared to have greater anti-biofilm effects compared to pure ISMN or ULV particles. Increasing liposomal lipid content improved the anti-biofilm efficacy of both MLV and ULVs at 5 min exposure. Conclusion Liposome-encapsulated “nitric oxide” is highly effective in eradicating S. aureus biofilms in-vitro, giving great promise for use in the clinical setting to treat this burdensome infection. Further studies however are needed to assess its safety and efficacy in-vivo before clinical translation is attempted.


Aaps Journal | 2016

Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems

Tahnee J. Dening; Shasha Rao; Nicky Thomas; Clive A. Prestidge

ABSTRACTLipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.


Expert Opinion on Drug Delivery | 2016

Polymer-lipid hybrid systems: merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery

Shasha Rao; Clive A. Prestidge

ABSTRACT Introduction: A number of biobarriers limit efficient oral drug absorption; both polymer-based and lipid-based nanocarriers have demonstrated properties and delivery mechanisms to overcome these biobarriers in preclinical settings. Moreover, in order to address the multifaceted oral drug delivery challenges, polymer-lipid hybrid systems are now being designed to merge the beneficial features of both polymeric and lipid-based nanocarriers. Areas covered: Recent advances in the development of polymer-lipid hybrids with a specific focus on their viability in oral delivery are reviewed. Three classes of polymer-lipid hybrids have been identified, i.e. lipid-core polymer-shell systems, polymer-core lipid-shell systems, and matrix-type polymer-lipid hybrids. We focus on their application to overcome the various biological barriers to oral drug absorption, as exemplified by selected preclinical studies. Expert opinion: Numerous studies have demonstrated the superiority of polymer-lipid hybrid systems to their non-hybrid counterparts in providing improved drug encapsulation, modulated drug release, and improved cellular uptake. These features have encouraged their applications in the delivery of chemotherapeutics, proteins, peptides, and vaccines. With further research expected to optimize the manufacturing and scaling up processes and in-depth pre-clinical pharmacological and toxicological assessments, these multifaceted drug delivery systems will have significant clinical impact on the oral delivery of pharmaceuticals and biopharmaceuticals.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Synergistic role of self-emulsifying lipids and nanostructured porous silica particles in optimizing the oral delivery of lovastatin

Shasha Rao; Angel Tan; Benjamin James Boyd; Clive A. Prestidge

AIM To investigate the role of self-emulsifying lipids and porous silica particles in enhancing supersaturated drug loading and biopharmaceutical performance of nanostructured silica-lipid hybrid (SLH) systems. MATERIALS & METHODS Two lovastatin (LOV)-SLHs were engineered from self-emulsifying lipid (Gelucire(®) 44/14; Gattefossé, Lyon, France) and Aerosil(®) 380 (SLH-A; Evonik Industries, Essen, Germany) or Syloid(®) 244FP silica (SLH-S; Grace Davison Discovery Sciences, Rowville, Australia). RESULTS & DISCUSSION The LOV-SLHs encapsulated LOV at 10% w/w, which is ≥3-fold higher than typical lipid formulations in the absence of porous silica. The LOV-SLHs retained self-emulsifying lipid-associated solubilization benefits and improved drug solubilization by twofold in simulated intestinal condition. SLH-S, with larger surface area (299 m(2)/g), was superior to SLH-A (184 m(2)/g) in optimizing oral bioavailability, suggesting a critical role of the silica geometry. Bioavailability of SLH-S was 2.8- and 1.3-fold higher than pure drug and drug suspension in Gelucire 44/14, respectively. CONCLUSION In conclusion, SLHs profit from advantages associated with both self-emulsifying lipids and porous silica, and provide potentially improved therapy against coronary artery disease.


Journal of Controlled Release | 2014

Perspective and potential of oral lipid-based delivery to optimize pharmacological therapies against cardiovascular diseases.

Shasha Rao; Angel Tan; Nicky Thomas; Clive A. Prestidge

Cardiovascular diseases (CVDs) remain the major cause of morbidity and mortality globally. Despite the large number of cardiovascular drugs available for pharmacological therapies, factors limiting the efficient oral use are identified, including low water solubility, pre-systemic metabolism, food intake effects and short half-life. Numerous in vivo proof-of-concepts studies are presented to highlight the viability of lipid-based delivery to optimize the oral delivery of cardiovascular drugs. In particular, the key performance enhancement roles of oral lipid-based drug delivery systems (LBDDSs) are identified, which include i) improving the oral bioavailability, ii) sustaining/controlling drug release, iii) improving drug stability, iv) reducing food intake effect, v) targeting to injured sites, and vi) potential for combination therapy. Mechanisms involved in achieving these features, range of applicability, and limits of available systems are detailed. Future research and development efforts to address these issues are discussed, which is of significant value in directing future research work in fostering translation of lipid-based formulations into clinical applications to reduce the prevalence of CVDs.


Molecular Pharmaceutics | 2015

Pluronic-Functionalized Silica-Lipid Hybrid Microparticles: Improving the Oral Delivery of Poorly Water-Soluble Weak Bases.

Shasha Rao; Katharina Richter; Tri-Hung Nguyen; Benjamin James Boyd; Christopher J. H. Porter; Angel Tan; Clive A. Prestidge

A Pluronic-functionalized silica-lipid hybrid (Plu-SLH) microparticle system for the oral delivery of poorly water-soluble, weak base drugs is reported for the first time. A highly effective Plu-SLH microparticle system was composed of Labrasol as the lipid phase, Pluronic F127 as the polymeric precipitation inhibitor (PPI), and silica nanoparticles as the solid carrier. For the model drug cinnarizine (CIN), the Plu-SLH delivery system was shown to offer significant biopharmaceutical advantages in comparison with unformulated drug and drug in the silica-lipid hybrid (SLH) system. In vitro two-phase dissolution studies illustrated significantly reduced pH provoked CIN precipitation and an 8- to 14-fold improvement in the extent of dissolution in intestinal conditions. In addition, under simulated intestinal digesting conditions, the Plu-SLH provided approximately three times more drug solubilization than the SLH. Oral administration in rats resulted in superior bioavailability for Plu-SLH microparticles, i.e., 1.6- and 2.1-fold greater than the SLH and the unformulated CIN, respectively. A physical mixture of Pluronic and SLH (Plu&SLH), having the same composition as Plu-SLH, was also evaluated, but showed no significant increase in CIN absorption when compared to unmodified CIN or SLH. This work represents the first study where different methods of incorporating PPI to formulate solid-state lipid-based formulations were compared for the impact on the biopharmaceutical performance. The data suggest that the novel physicochemical properties and structure of the fabricated Plu-SLH microparticle delivery system play an important role in facilitating the synergistic advantage of Labrasol and Pluronic F127 in preventing drug precipitation, and the Plu-SLH provides efficient oral delivery of poorly water-soluble weak bases.


Journal of Controlled Release | 2016

Oral nanomedicine approaches for the treatment of psychiatric illnesses.

Tahnee J. Dening; Shasha Rao; Nicky Thomas; Clive A. Prestidge

Psychiatric illnesses are a leading cause of disability and morbidity globally. However, the preferred orally dosed pharmacological treatment options available for depression, anxiety and schizophrenia are often limited by factors such as low drug aqueous solubility, food effects, high hepatic first-pass metabolism effects and short half-lives. Furthermore, the discovery and development of more effective psychotropic agents has stalled in recent times, with the majority of new drugs reaching the market offering similar efficacy, but suffering from the same oral delivery concerns. As such, the application of nanomedicine formulation approaches to currently available drugs is a viable option for optimizing oral drug delivery and maximizing treatment efficacy. This review focuses on the various delivery challenges encountered by psychotropic drugs, and the ability of nanomedicine formulation strategies to overcome these. Specifically, we critically review proof of concept in vitro and in vivo studies of nanoemulsions/microemulsions, solid lipid nanoparticles, dendrimers, polymeric micelles, nanoparticles of biodegradable polymers and nanosuspensions, and provide new insight into the various mechanisms for improved drug performance. The advantages and limitations of current oral nanomedicine approaches for psychotropic drugs are discussed, which will provide guidance for future research directions and assist in fostering the translation of such delivery systems to the clinical setting. Accordingly, emphasis has been placed on correlating the in vitro/in vivo performance of these nanomedicine approaches with their potential clinical outcomes and benefits for patients.


Molecular Pharmaceutics | 2016

Lipophilic Prodrugs of SN38: Synthesis and in Vitro Characterization toward Oral Chemotherapy

Vaskor Bala; Shasha Rao; Peng Li; Shudong Wang; Clive A. Prestidge

SN38 (7-ethyl-10-hydroxy camptothecin) is a potent anticancer agent belonging to the camptothecin family; however, its oral delivery is extensively restricted by poor solubility in pharmaceutically acceptable excipients and low transmucosal permeability. Lipid-based carriers are well-known for their ability to improve oral absorption and bioavailability of lipid soluble and highly permeable compounds. Thus, this study has focused on improving solubility in lipid excipients, controlling stability, and enhancing transmucosal permeability of SN38 by specific chemical modification. To achieve these aims, a series of lipophilic prodrugs were designed and synthesized by esterification at the C10 and/or C20 positon(s) of SN38 with dietary fatty acids of diverse hydrocarbon chain lengths. The solubility of these novel prodrugs in long-chain triglycerides was increased up to 444-fold, and cytotoxicity was significantly reduced in comparison to SN38. The prodrugs were stable in simulated gastric fluids but exhibited different rates of hydrolysis (t1/2 < 5 min to t1/2 > 2 h) in simulated intestinal fluids (in the presence of enzymes) depending on the alkyl chain length and the position modified. A predictable reconversion of prodrugs to SN38 in plasma was also confirmed. On the basis of these studies, SN38-undecanoate (C20) was identified as the optimal prodrug. Finally, in vitro permeability and uptake studies in rat intestinal mucosal membrane using an Ussing chamber showed significant improvement in transepithelial drug transport and cellular uptake. Together, these results indicate that well designed lipophilic prodrugs have potential for the efficacious and safe oral delivery of SN38.

Collaboration


Dive into the Shasha Rao's collaboration.

Top Co-Authors

Avatar

Clive A. Prestidge

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Nicky Thomas

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Angel Tan

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Tahnee J. Dening

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Vaskor Bala

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Benjamin Thierry

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristen E. Bremmell

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge