Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shashank Agarwal is active.

Publication


Featured researches published by Shashank Agarwal.


BMC Bioinformatics | 2011

The Protein-Protein Interaction tasks of BioCreative III: classification/ranking of articles and linking bio-ontology concepts to full text

Martin Krallinger; Miguel Vazquez; Florian Leitner; David Salgado; Andrew Chatr-aryamontri; Andrew Winter; Livia Perfetto; Leonardo Briganti; Luana Licata; Marta Iannuccelli; Luisa Castagnoli; Gianni Cesareni; Mike Tyers; Gerold Schneider; Fabio Rinaldi; Robert Leaman; Graciela Gonzalez; Sérgio Matos; Sun Kim; W. John Wilbur; Luis Mateus Rocha; Hagit Shatkay; Ashish V. Tendulkar; Shashank Agarwal; Feifan Liu; Xinglong Wang; Rafal Rak; Keith Noto; Charles Elkan; Zhiyong Lu

BackgroundDetermining usefulness of biomedical text mining systems requires realistic task definition and data selection criteria without artificial constraints, measuring performance aspects that go beyond traditional metrics. The BioCreative III Protein-Protein Interaction (PPI) tasks were motivated by such considerations, trying to address aspects including how the end user would oversee the generated output, for instance by providing ranked results, textual evidence for human interpretation or measuring time savings by using automated systems. Detecting articles describing complex biological events like PPIs was addressed in the Article Classification Task (ACT), where participants were asked to implement tools for detecting PPI-describing abstracts. Therefore the BCIII-ACT corpus was provided, which includes a training, development and test set of over 12,000 PPI relevant and non-relevant PubMed abstracts labeled manually by domain experts and recording also the human classification times. The Interaction Method Task (IMT) went beyond abstracts and required mining for associations between more than 3,500 full text articles and interaction detection method ontology concepts that had been applied to detect the PPIs reported in them.ResultsA total of 11 teams participated in at least one of the two PPI tasks (10 in ACT and 8 in the IMT) and a total of 62 persons were involved either as participants or in preparing data sets/evaluating these tasks. Per task, each team was allowed to submit five runs offline and another five online via the BioCreative Meta-Server. From the 52 runs submitted for the ACT, the highest Matthews Correlation Coefficient (MCC) score measured was 0.55 at an accuracy of 89% and the best AUC iP/R was 68%. Most ACT teams explored machine learning methods, some of them also used lexical resources like MeSH terms, PSI-MI concepts or particular lists of verbs and nouns, some integrated NER approaches. For the IMT, a total of 42 runs were evaluated by comparing systems against manually generated annotations done by curators from the BioGRID and MINT databases. The highest AUC iP/R achieved by any run was 53%, the best MCC score 0.55. In case of competitive systems with an acceptable recall (above 35%) the macro-averaged precision ranged between 50% and 80%, with a maximum F-Score of 55%.ConclusionsThe results of the ACT task of BioCreative III indicate that classification of large unbalanced article collections reflecting the real class imbalance is still challenging. Nevertheless, text-mining tools that report ranked lists of relevant articles for manual selection can potentially reduce the time needed to identify half of the relevant articles to less than 1/4 of the time when compared to unranked results. Detecting associations between full text articles and interaction detection method PSI-MI terms (IMT) is more difficult than might be anticipated. This is due to the variability of method term mentions, errors resulting from pre-processing of articles provided as PDF files, and the heterogeneity and different granularity of method term concepts encountered in the ontology. However, combining the sophisticated techniques developed by the participants with supporting evidence strings derived from the articles for human interpretation could result in practical modules for biological annotation workflows.


BMC Bioinformatics | 2011

The gene normalization task in BioCreative III

Zhiyong Lu; Hung Yu Kao; Chih-Hsuan Wei; Minlie Huang; Jingchen Liu; Cheng-Ju Kuo; Chun-Nan Hsu; Richard Tzong-Han Tsai; Hong-Jie Dai; Naoaki Okazaki; Han-Cheol Cho; Martin Gerner; Illés Solt; Shashank Agarwal; Feifan Liu; Dina Vishnyakova; Patrick Ruch; Martin Romacker; Fabio Rinaldi; Sanmitra Bhattacharya; Padmini Srinivasan; Hongfang Liu; Manabu Torii; Sérgio Matos; David Campos; Karin Verspoor; Kevin Livingston; W. John Wilbur

BackgroundWe report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the genes detected in full-text articles. For training, 32 fully and 500 partially annotated articles were prepared. A total of 507 articles were selected as the test set. Due to the high annotation cost, it was not feasible to obtain gold-standard human annotations for all test articles. Instead, we developed an Expectation Maximization (EM) algorithm approach for choosing a small number of test articles for manual annotation that were most capable of differentiating team performance. Moreover, the same algorithm was subsequently used for inferring ground truth based solely on team submissions. We report team performance on both gold standard and inferred ground truth using a newly proposed metric called Threshold Average Precision (TAP-k).ResultsWe received a total of 37 runs from 14 different teams for the task. When evaluated using the gold-standard annotations of the 50 articles, the highest TAP-k scores were 0.3297 (k=5), 0.3538 (k=10), and 0.3535 (k=20), respectively. Higher TAP-k scores of 0.4916 (k=5, 10, 20) were observed when evaluated using the inferred ground truth over the full test set. When combining team results using machine learning, the best composite system achieved TAP-k scores of 0.3707 (k=5), 0.4311 (k=10), and 0.4477 (k=20) on the gold standard, representing improvements of 12.4%, 21.8%, and 26.6% over the best team results, respectively.ConclusionsBy using full text and being species non-specific, the GN task in BioCreative III has moved closer to a real literature curation task than similar tasks in the past and presents additional challenges for the text mining community, as revealed in the overall team results. By evaluating teams using the gold standard, we show that the EM algorithm allows team submissions to be differentiated while keeping the manual annotation effort feasible. Using the inferred ground truth we show measures of comparative performance between teams. Finally, by comparing team rankings on gold standard vs. inferred ground truth, we further demonstrate that the inferred ground truth is as effective as the gold standard for detecting good team performance.


BMC Bioinformatics | 2011

BioCreative III interactive task: an overview

Cecilia N. Arighi; Phoebe M. Roberts; Shashank Agarwal; Sanmitra Bhattacharya; Gianni Cesareni; Andrew Chatr-aryamontri; Simon Clematide; Pascale Gaudet; Michelle G. Giglio; Ian Harrow; Eva Huala; Martin Krallinger; Ulf Leser; Donghui Li; Feifan Liu; Zhiyong Lu; Lois J Maltais; Naoaki Okazaki; Livia Perfetto; Fabio Rinaldi; Rune Sætre; David Salgado; Padmini Srinivasan; Philippe Thomas; Luca Toldo; Lynette Hirschman; Cathy H. Wu

BackgroundThe BioCreative challenge evaluation is a community-wide effort for evaluating text mining and information extraction systems applied to the biological domain. The biocurator community, as an active user of biomedical literature, provides a diverse and engaged end user group for text mining tools. Earlier BioCreative challenges involved many text mining teams in developing basic capabilities relevant to biological curation, but they did not address the issues of system usage, insertion into the workflow and adoption by curators. Thus in BioCreative III (BC-III), the InterActive Task (IAT) was introduced to address the utility and usability of text mining tools for real-life biocuration tasks. To support the aims of the IAT in BC-III, involvement of both developers and end users was solicited, and the development of a user interface to address the tasks interactively was requested.ResultsA User Advisory Group (UAG) actively participated in the IAT design and assessment. The task focused on gene normalization (identifying gene mentions in the article and linking these genes to standard database identifiers), gene ranking based on the overall importance of each gene mentioned in the article, and gene-oriented document retrieval (identifying full text papers relevant to a selected gene). Six systems participated and all processed and displayed the same set of articles. The articles were selected based on content known to be problematic for curation, such as ambiguity of gene names, coverage of multiple genes and species, or introduction of a new gene name. Members of the UAG curated three articles for training and assessment purposes, and each member was assigned a system to review. A questionnaire related to the interface usability and task performance (as measured by precision and recall) was answered after systems were used to curate articles. Although the limited number of articles analyzed and users involved in the IAT experiment precluded rigorous quantitative analysis of the results, a qualitative analysis provided valuable insight into some of the problems encountered by users when using the systems. The overall assessment indicates that the system usability features appealed to most users, but the system performance was suboptimal (mainly due to low accuracy in gene normalization). Some of the issues included failure of species identification and gene name ambiguity in the gene normalization task leading to an extensive list of gene identifiers to review, which, in some cases, did not contain the relevant genes. The document retrieval suffered from the same shortfalls. The UAG favored achieving high performance (measured by precision and recall), but strongly recommended the addition of features that facilitate the identification of correct gene and its identifier, such as contextual information to assist in disambiguation.DiscussionThe IAT was an informative exercise that advanced the dialog between curators and developers and increased the appreciation of challenges faced by each group. A major conclusion was that the intended users should be actively involved in every phase of software development, and this will be strongly encouraged in future tasks. The IAT Task provides the first steps toward the definition of metrics and functional requirements that are necessary for designing a formal evaluation of interactive curation systems in the BioCreative IV challenge.


Journal of the American Medical Informatics Association | 2010

Biomedical negation scope detection with conditional random fields

Shashank Agarwal; Hong Yu

OBJECTIVE Negation is a linguistic phenomenon that marks the absence of an entity or event. Negated events are frequently reported in both biological literature and clinical notes. Text mining applications benefit from the detection of negation and its scope. However, due to the complexity of language, identifying the scope of negation in a sentence is not a trivial task. DESIGN Conditional random fields (CRF), a supervised machine-learning algorithm, were used to train models to detect negation cue phrases and their scope in both biological literature and clinical notes. The models were trained on the publicly available BioScope corpus. MEASUREMENT The performance of the CRF models was evaluated on identifying the negation cue phrases and their scope by calculating recall, precision and F1-score. The models were compared with four competitive baseline systems. RESULTS The best CRF-based model performed statistically better than all baseline systems and NegEx, achieving an F1-score of 98% and 95% on detecting negation cue phrases and their scope in clinical notes, and an F1-score of 97% and 85% on detecting negation cue phrases and their scope in biological literature. CONCLUSIONS This approach is robust, as it can identify negation scope in both biological and clinical text. To benefit text mining applications, the system is publicly available as a Java API and as an online application at http://negscope.askhermes.org.


Bioinformatics | 2009

Automatically classifying sentences in full-text biomedical articles into Introduction, Methods, Results and Discussion

Shashank Agarwal; Hong Yu

Biomedical texts can be typically represented by four rhetorical categories: Introduction, Methods, Results and Discussion (IMRAD). Classifying sentences into these categories can benefit many other text-mining tasks. Although many studies have applied different approaches for automatically classifying sentences in MEDLINE abstracts into the IMRAD categories, few have explored the classification of sentences that appear in full-text biomedical articles. We first evaluated whether sentences in full-text biomedical articles could be reliably annotated into the IMRAD format and then explored different approaches for automatically classifying these sentences into the IMRAD categories. Our results show an overall annotation agreement of 82.14% with a Kappa score of 0.756. The best classification system is a multinomial naïve Bayes classifier trained on manually annotated data that achieved 91.95% accuracy and an average F-score of 91.55%, which is significantly higher than baseline systems. A web version of this system is available online at-http://wood.ims.uwm.edu/full_text_classifier/.


Journal of Biomedical Informatics | 2010

Detecting hedge cues and their scope in biomedical text with conditional random fields

Shashank Agarwal; Hong Yu

OBJECTIVE Hedging is frequently used in both the biological literature and clinical notes to denote uncertainty or speculation. It is important for text-mining applications to detect hedge cues and their scope; otherwise, uncertain events are incorrectly identified as factual events. However, due to the complexity of language, identifying hedge cues and their scope in a sentence is not a trivial task. Our objective was to develop an algorithm that would automatically detect hedge cues and their scope in biomedical literature. METHODOLOGY We used conditional random fields (CRFs), a supervised machine-learning algorithm, to train models to detect hedge cue phrases and their scope in biomedical literature. The models were trained on the publicly available BioScope corpus. We evaluated the performance of the CRF models in identifying hedge cue phrases and their scope by calculating recall, precision and F1-score. We compared our models with three competitive baseline systems. RESULTS Our best CRF-based model performed statistically better than the baseline systems, achieving an F1-score of 88% and 86% in detecting hedge cue phrases and their scope in biological literature and an F1-score of 93% and 90% in detecting hedge cue phrases and their scope in clinical notes. CONCLUSIONS Our approach is robust, as it can identify hedge cues and their scope in both biological and clinical text. To benefit text-mining applications, our system is publicly available as a Java API and as an online application at http://hedgescope.askhermes.org. To our knowledge, this is the first publicly available system to detect hedge cues and their scope in biomedical literature.


Journal of Biomedical Discovery and Collaboration | 2009

Are figure legends sufficient? Evaluating the contribution of associated text to biomedical figure comprehension

Hong Yu; Shashank Agarwal; Mark Johnston; Aaron M. Cohen

BackgroundBiomedical scientists need to access figures to validate research facts and to formulate or to test novel research hypotheses. However, figures are difficult to comprehend without associated text (e.g., figure legend and other reference text). We are developing automated systems to extract the relevant explanatory information along with figures extracted from full text articles. Such systems could be very useful in improving figure retrieval and in reducing the workload of biomedical scientists, who otherwise have to retrieve and read the entire full-text journal article to determine which figures are relevant to their research. As a crucial step, we studied the importance of associated text in biomedical figure comprehension.MethodsTwenty subjects evaluated three figure-text combinations: figure+legend, figure+legend+title+abstract, and figure+full-text. Using a Likert scale, each subject scored each figure+text according to the extent to which the subject thought he/she understood the meaning of the figure and the confidence in providing the assigned score. Additionally, each subject entered a free text summary for each figure-text. We identified missing information using indicator words present within the text summaries. Both the Likert scores and the missing information were statistically analyzed for differences among the figure-text types. We also evaluated the quality of text summaries with the text-summarization evaluation method the ROUGE score.ResultsOur results showed statistically significant differences in figure comprehension when varying levels of text were provided. When the full-text article is not available, presenting just the figure+legend left biomedical researchers lacking 39–68% of the information about a figure as compared to having complete figure comprehension; adding the title and abstract improved the situation, but still left biomedical researchers missing 30% of the information. When the full-text article is available, figure comprehension increased to 86–97%; this indicates that researchers felt that only 3–14% of the necessary information for full figure comprehension was missing when full text was available to them. Clearly there is information in the abstract and in the full text that biomedical scientists deem important for understanding the figures that appear in full-text biomedical articles.ConclusionWe conclude that the texts that appear in full-text biomedical articles are useful for understanding the meaning of a figure, and an effective figure-mining system needs to unlock the information beyond figure legend. Our work provides important guidance to the figure mining systems that extract information only from figure and figure legend.


BMC Bioinformatics | 2011

BioN∅T: A searchable database of biomedical negated sentences

Shashank Agarwal; Hong Yu; Isaac S. Kohane

BackgroundNegated biomedical events are often ignored by text-mining applications; however, such events carry scientific significance. We report on the development of BioN∅T, a database of negated sentences that can be used to extract such negated events.DescriptionCurrently BioN∅T incorporates ≈32 million negated sentences, extracted from over 336 million biomedical sentences from three resources: ≈2 million full-text biomedical articles in Elsevier and the PubMed Central, as well as ≈20 million abstracts in PubMed. We evaluated BioN∅T on three important genetic disorders: autism, Alzheimers disease and Parkinsons disease, and found that BioN∅T is able to capture negated events that may be ignored by experts.ConclusionsThe BioN∅T database can be a useful resource for biomedical researchers. BioN∅T is freely available at http://bionot.askhermes.org/ In future work, we will develop semantic web related technologies to enrich BioN∅T.


BMC Bioinformatics | 2011

Simple and efficient machine learning frameworks for identifying protein-protein interaction relevant articles and experimental methods used to study the interactions

Shashank Agarwal; Feifan Liu; Hong Yu

BackgroundProtein-protein interaction (PPI) is an important biomedical phenomenon. Automatically detecting PPI-relevant articles and identifying methods that are used to study PPI are important text mining tasks. In this study, we have explored domain independent features to develop two open source machine learning frameworks. One performs binary classification to determine whether the given article is PPI relevant or not, named “Simple Classifier”, and the other one maps the PPI relevant articles with corresponding interaction method nodes in a standardized PSI-MI (Proteomics Standards Initiative-Molecular Interactions) ontology, named “OntoNorm”.ResultsWe evaluated our system in the context of BioCreative challenge competition using the standardized data set. Our systems are amongst the top systems reported by the organizers, attaining 60.8% F1-score for identifying relevant documents, and 52.3% F1-score for mapping articles to interaction method ontology.ConclusionOur results show that domain-independent machine learning frameworks can perform competitively well at the tasks of detecting PPI relevant articles and identifying the methods that were used to study the interaction in such articles.AvailabilitySimple Classifier is available at http://sourceforge.net/p/simpleclassify/home/ and OntoNorm at http://sourceforge.net/p/ontonorm/home/.


Bioinformatics | 2011

Figure summarizer browser extensions for PubMed Central

Shashank Agarwal; Hong Yu

SUMMARY Figures in biomedical articles present visual evidence for research facts and help readers understand the article better. However, when figures are taken out of context, it is difficult to understand their content. We developed a summarization algorithm to summarize the content of figures and used it in our figure search engine (http://figuresearch.askhermes.org/). In this article, we report on the development of web browser extensions for Mozilla Firefox, Google Chrome and Apple Safari to display summaries for figures in PubMed Central and NCBI Images. AVAILABILITY The extensions can be downloaded from http://figuresearch.askhermes.org/articlesearch/extensions.php.

Collaboration


Dive into the Shashank Agarwal's collaboration.

Top Co-Authors

Avatar

Hong Yu

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Feifan Liu

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Zhiyong Lu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. John Wilbur

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gianni Cesareni

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Livia Perfetto

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge