Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shashank K. Singh is active.

Publication


Featured researches published by Shashank K. Singh.


Chemico-Biological Interactions | 2011

A propionyloxy derivative of 11-keto-β-boswellic acid induces apoptosis in HL-60 cells mediated through topoisomerase I & II inhibition

Gousia Chashoo; Shashank K. Singh; Paraduman R. Sharma; Dilip M. Mondhe; Abid Hamid; A. K. Saxena; Samar S. Andotra; Bhahwal Ali Shah; Naveed Ahmed Qazi; Subhash C. Taneja; Ajit Kumar Saxena

Boswellic acids have invariably been reported for their antiproliferative potential in various cell systems. In the present study the growth inhibitory effect of propionyloxy derivative of 11-keto-β-boswellic acid (PKBA; a semisynthetic analogue of 11-keto-β-boswellic acid) on HL-60 promyelocytic leukemia cells is being reported for the first time. In the preliminary studies, in vitro cytotoxicity of PKBA was investigated against eight human cancer cell lines viz., IMR-32, SF-295 (both neuroblastoma), PC-3 (prostate), Colo-205 (colon), MCF-7 (breast), OVCAR-5 (ovary), HL-60, Molt-4 (both leukemia) and their respective IC(50) values were found to be 5.95, 7.11, 15.2, 14.5, 15, 15.9, 8.7 & 9.5μg/ml, respectively. For determining the mechanism of cell death in HL-60 cells, PKBA was subjected to different mechanistic studies. DNA relaxation assay of PKBA revealed inhibition of both topoisomerases I & II. The fragmentation analysis of DNA revealed typical ladders indicating the cytotoxic effect to be mediated by induction of apoptosis. The morphologic studies of PKBA showed the presence of true apoptotic bodies. Apoptosis was confirmed further by flow-cytometric detection of sub-G(1) peaks and enhanced annexin-V-FITC binding of the cells. The activation of apoptotic cascade by PKBA in HL-60 cells was found to be associated with the loss of mitochondrial membrane potential, release of cytochrome c, activation of initiator and executioner caspases and cleavage of poly ADP ribose polymerase (PARP). In vivo studies of PKBA revealed anti-tumoral activity against both ascitic and solid murine tumor models. These studies thus demonstrate PKBA to induce apoptosis in HL-60 cells due to the inhibition of topoisomerases I and II.


International Journal of Pharmaceutics | 2015

Development and evaluation of folate functionalized albumin nanoparticles for targeted delivery of gemcitabine

Ravindra Dhar Dubey; Noor Alam; Ankit Saneja; Vaibhav Khare; Ashok Kumar; Shagun Vaidh; Girish Mahajan; Parduman Raj Sharma; Shashank K. Singh; Dilip M. Mondhe; Prem N. Gupta

Gemcitabine is one of the most potent anticancer agents acting on a wide range of solid tumors, however, its use is limited by short half life and high dose leading to serious side effects. The present investigation describes the development and characterization of folate functionalized gemcitabine loaded bovine serum albumin nanoparticles (Fa-Gem-BSANPs). The nanoparticles were prepared by desolvation cross-linking technique and characterized for various parameters including morphology, particle size, zeta potential, drug loading and release profile. The particle size of Gem-BSANPs and Fa-Gem-BSANPs was found to be 159.1±5.29 and 208.7±1.80 nm, respectively. DSC and XRD analysis indicated amorphous nature of the drug within the particles. The encapsulated gemcitabine exhibited less hemolytic properties as compared to native drug. The anticancer activity of Fa-Gem-BSANPs was evaluated in folate receptor over expressing cell lines (Ovcar-5 and MCF-7) and folate receptor deficient cell line (MIAPaCa-2). The Fa-Gem-BSANPs showed superior anticancer activity as compared to Gem-BSANPs in Ovcar-5 and MCF-7 cells while no significant difference in cytotoxicity was found with MIAPaCa-2 cells. Confocal microscopy indicated facilitated intracellular uptake of Fa-Gem-BSANPs in MCF-7, which in turn result in a higher potential for apoptosis. Further, Fa-Gem-BSANPs exhibited improved anti-tumor activity in Ehrlich solid tumor model in mice. In conclusion, our study indicates that folate functionalized nanoparticles confer enhance cellular uptake and cytotoxicity for gemcitabine.


Journal of Microencapsulation | 2011

Transferrin-appended PEGylated nanoparticles for temozolomide delivery to brain: in vitro characterisation.

Aviral Jain; Gousia Chasoo; Shashank K. Singh; Ajit Kumar Saxena; Sanjay K. Jain

Polymer-based nanotechnologies are proposed to be an alternative for drug administration, delivery and targeting to those of conventional formulations. The blood brain barrier is frequently a rate-limiting factor in determining permeation of a drug into brain. In this study, the surface-engineered long-circulating PLGA nanoparticles (NPs) were assessed for brain-specific delivery. Long circulating NPs of PLGA- and PEG-synthesised copolymer were prepared by emulsification solvent evaporation method. Further, the surface of PEGylated NPs was modified by anchoring transferrin (Tf) ligand for receptor-mediated targeting to brain. NPs were characterised for shape and size, zeta potential, entrapment efficiency and in vitro drug release. In vitro cytotoxicity studies were performed on human cancer cell lines. Confocal Laser Scanning Microscopy studies show the enhanced uptake of Tf-appended PEGylated NPs and their localisation in the brain tissues. Hence, the specific role of Tf ligand on PEGylated NPs for brain delivery was confirmed.


Bioorganic & Medicinal Chemistry Letters | 2012

Acyl derivatives of boswellic acids as inhibitors of NF-κB and STATs

Ajay Kumar; Bhahwal Ali Shah; Samar Singh; Abid Hamid; Shashank K. Singh; Vijay Kumar Sethi; Ajit Kumar Saxena; Jaswant Singh; Subhash C. Taneja

Boswellic acid acylates including their epimers were synthesized and screened against a panel of human cancer cell lines. They exhibited a range of cytotoxicity against various human cancer cell lines thereby leading to the development of a possible SAR. One of the identified lead compounds was found to be an inhibitor of the NF-κB and STAT proteins, warranting further investigations to be developed into a potential anticancer lead.


Planta Medica | 2008

Induction of Mitochondrial-Dependent Apoptosis by an Essential Oil from Tanacetum gracile

Monika Verma; Shashank K. Singh; Shashi Bhushan; Harish Chandra Pal; Maharaj K. Koul; Rajender K. Thappa; Ajit Kumar Saxena

The essential oil of Tanacetum gracile (Accession no. AT-01 termed AT-01 in the manuscript), a cold desert alpine highly aromatic herb, has 40 constituents including lavendulol (21.5 %), lavendulol acetate (1.7 %), alpha-pinene (11.2 %), 1,8-cineole (15.2 %), CIS-beta-ocimene (6.9 %), borneol (6.1 %), limonene (5.1 %) and chamazulene (3.7 %). AT-01 was evaluated for its anticancer activity. It inhibited HL-60 cell proliferation with an IC (50) of 27 microg/mL. Furthermore, AT-01 induced apoptosis in human leukemia HL-60 cells as measured by several biological end points. AT-01 induced apoptotic body formation, enhanced annexinV-FITC binding of the cells, increased sub-G (0) DNA fraction, loss of mitochondrial membrane potential (Deltapsi (mt)) and release of cytochrome c from mitochondria, activated caspase-9 as well as caspase-3, and increased cleavage of PARP in HL-60 cells. Thus, AT-01 induced apoptosis through the mitochondrial dependent pathway in HL-60 cells.


International Journal of Pharmaceutics | 2014

Synthesis, characterization and mechanistic-insight into the anti-proliferative potential of PLGA-gemcitabine conjugate.

Vaibhav Khare; Smit Kour; Noor Alam; Ravindra Dubey; Ankit Saneja; Mytre Koul; Ajai Prakash Gupta; Deepika Singh; Shashank K. Singh; Ajit Kumar Saxena; Prem N. Gupta

Gemcitabine, a nucleoside analogue, is used in the treatment of various solid tumors, however, its efficacy is limited by rapid metabolism by cytidine deaminase and fast kidney excretion. In this study, a polymeric conjugate of gemcitabine was prepared by covalent coupling with poly(lactic-co-glycolic) acid (PLGA), in order to improve anticancer efficacy of the drug. The prepared conjugate was characterized by various analytical techniques including FTIR, NMR and mass spectroscopic analysis. The stability study indicated that the polymeric conjugate was more stable in plasma as compared to native gemcitabine. Further, in vitro cytotoxicity determined in a panel of cell lines including pancreatic cancer (MIAPaCa-2), breast cancer (MCF-7) and colon cancer (HCT-116), indicated that the cytotoxic activity of gemcitabine was retained following conjugation with polymeric carrier. In the nucleoside transportation inhibition assay, it was found that the prepared conjugate was not dependent on nucleoside transporter for entering into the cells and this, in turn, reflecting potential implication of this conjugate in the therapy of transporter- deficient resistance cancer. Further, the cell cycle analysis showed that the sub-G1 (G0) apoptotic population was 46.6% and 60.6% for gemcitabine and PLGA gemcitabine conjugate, respectively. The conjugate produced remarkable decrease in mitochondrial membrane potential, a marker of apoptosis. In addition, there was a marked increase in PARP cleavage and P-H2AX expression with PLGA gemcitabine conjugate as compared to native gemcitabine indicating improved apoptotic activity. The findings demonstrated the potential of PLGA gemcitabine conjugate to improve clinical outcome of gemcitabine based chemotherapy of cancer.


Bioorganic & Medicinal Chemistry | 2010

Synthesis of 4β-N-polyaromatic substituted podophyllotoxins: DNA topoisomerase inhibition, anticancer and apoptosis-inducing activities

Ahmed Kamal; B. Ashwini Kumar; Paidakula Suresh; Satyam Kumar Agrawal; Gousia Chashoo; Shashank K. Singh; A.K. Saxena

A new class of 4β-N-polyaromatic substituted podophyllotoxin congeners have been synthesized and evaluated for their DNA topoisomerase-II (topo-II) inhibition as well as anticancer potential in some human cancer cell lines. The ease of synthesis and interesting biological activities make the present series of polyaromatic-podophyllotoxin congeners as a promising new structure for the development of new anticancer agents based on podophyllotoxin scaffold.


Future Oncology | 2011

Interaction of natural products with cell survival and signaling pathways in the biochemical elucidation of drug targets in cancer

Yasrib Qurishi; Abid Hamid; Rabiya Majeed; Aashiq Hussain; Asif Khurshid Qazi; Mudassier Ahmed; Mohmmad Afzal Zargar; Shashank K. Singh; Ajit Kumar Saxena

The use of natural products with therapeutic properties is as ancient as human civilization and for a long time mineral, plant and animal products were the main sources of drugs. Worldwide sales of medicinal plants, crude extracts and finished products amounted to US


European Journal of Pharmacology | 2011

Potentiation of the antitumor effect of 11-keto-β-boswellic acid by its 3-α-hexanoyloxy derivative

Gousia Chashoo; Shashank K. Singh; Dilip M. Mondhe; Parduman Raj Sharma; Samar S. Andotra; Bhahwal Ali Shah; Subhash C. Taneja; Ajit Kumar Saxena

15 billion in 1999 and it increased to


Planta Medica | 2016

Secondary Metabolites from Endophytic Fungus Penicillium pinophilum Induce ROS-Mediated Apoptosis through Mitochondrial Pathway in Pancreatic Cancer Cells

Mytre Koul; Samdarshi Meena; Ashok Kumar; Parduman Raj Sharma; Venugopal Singamaneni; Syed Riyaz-Ul-Hassan; Abid Hamid; Asha Chaubey; Anil Prabhakar; Prasoon Gupta; Shashank K. Singh

23 billion in 2002. More interestingly, the influence of natural products upon anticancer drug discovery and design cannot be underestimated. Approximately 60% of all drugs in clinical trials are either a natural product, compounds derived from natural products or contain pharmacophores derived from active natural products. Thus, even today, in the presence of massive numbers of agents from combinatorial libraries, compounds from natural sources are still in the forefront of cancer chemotherapeutics as sources of active drug types, as well as being involved in drug discovery in diseases such as microbial and parasitic infections and the control of cholesterol/lipids, among other functions.

Collaboration


Dive into the Shashank K. Singh's collaboration.

Top Co-Authors

Avatar

Ajit Kumar Saxena

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Dilip M. Mondhe

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Parduman Raj Sharma

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Abid Hamid

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Arem Qayum

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Bhahwal Ali Shah

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Subhash C. Taneja

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Gousia Chashoo

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Prem N. Gupta

Banaras Hindu University

View shared research outputs
Top Co-Authors

Avatar

Aashiq Hussain

Council of Scientific and Industrial Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge