Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shatabdi Roy-Chowdhury is active.

Publication


Featured researches published by Shatabdi Roy-Chowdhury.


Nature | 2015

Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

Yanyong Kang; X. Edward Zhou; Xiang Gao; Yuanzheng He; Wei Liu; Andrii Ishchenko; Anton Barty; Thomas A. White; Oleksandr Yefanov; Gye Won Han; Qingping Xu; Parker W. de Waal; Jiyuan Ke; M. H.Eileen Tan; Chenghai Zhang; Arne Moeller; Graham M. West; Bruce D. Pascal; Ned Van Eps; Lydia N. Caro; Sergey A. Vishnivetskiy; Regina J. Lee; Kelly Suino-Powell; Xin Gu; Kuntal Pal; Jinming Ma; Xiaoyong Zhi; Sébastien Boutet; Garth J. Williams; Marc Messerschmidt

G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin–arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.


Science | 2014

Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein

Jason Tenboer; Shibom Basu; Nadia A. Zatsepin; Kanupriya Pande; Despina Milathianaki; Matthias Frank; Mark S. Hunter; Sébastien Boutet; Garth J. Williams; Jason E. Koglin; Dominik Oberthuer; Michael Heymann; Christopher Kupitz; Chelsie E. Conrad; Jesse Coe; Shatabdi Roy-Chowdhury; Uwe Weierstall; Daniel James; Dingjie Wang; Thomas D. Grant; Anton Barty; Oleksandr Yefanov; Jennifer Scales; Cornelius Gati; Carolin Seuring; Vukica Šrajer; Robert Henning; Peter Schwander; Raimund Fromme; A. Ourmazd

Serial femtosecond crystallography using ultrashort pulses from x-ray free electron lasers (XFELs) enables studies of the light-triggered dynamics of biomolecules. We used microcrystals of photoactive yellow protein (a bacterial blue light photoreceptor) as a model system and obtained high-resolution, time-resolved difference electron density maps of excellent quality with strong features; these allowed the determination of structures of reaction intermediates to a resolution of 1.6 angstroms. Our results open the way to the study of reversible and nonreversible biological reactions on time scales as short as femtoseconds under conditions that maximize the extent of reaction initiation throughout the crystal. Structural changes during a macromolecular reaction are captured at near-atomic resolution by an x-ray free electron laser. Watching a protein molecule in motion X-ray crystallography has yielded beautiful high-resolution images that give insight into how proteins function. However, these represent static snapshots of what are often dynamic processes. For photosensitive molecules, time-resolved crystallography at a traditional synchrotron source provides a method to follow structural changes with a time resolution of about 100 ps. X-ray free electron lasers (XFELs) open the possibility of performing time-resolved experiments on time scales as short as femtoseconds. Tenboer et al. used XFELs to study the light-triggered dynamics of photoactive yellow protein. Electron density maps of high quality were obtained 10 ns and 1 µs after initiating the reaction. At 1 µs, two intermediates revealed previously unidentified structural changes. Science, this issue p. 1242


Science | 2016

Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein.

Kanupriya Pande; C. Hutchison; Gerrit Groenhof; Andy Aquila; Josef S. Robinson; Jason Tenboer; Shibom Basu; Sébastien Boutet; Daniel P. DePonte; Mengning Liang; Thomas A. White; Nadia A. Zatsepin; Oleksandr Yefanov; Dmitry Morozov; Dominik Oberthuer; Cornelius Gati; Ganesh Subramanian; Daniel James; Yun Zhao; J. D. Koralek; Jennifer Brayshaw; Christopher Kupitz; Chelsie E. Conrad; Shatabdi Roy-Chowdhury; Jesse Coe; Markus Metz; Paulraj Lourdu Xavier; Thomas D. Grant; Jason E. Koglin; Gihan Ketawala

Visualizing a response to light Many biological processes depend on detecting and responding to light. The response is often mediated by a structural change in a protein that begins when absorption of a photon causes isomerization of a chromophore bound to the protein. Pande et al. used x-ray pulses emitted by a free electron laser source to conduct time-resolved serial femtosecond crystallography in the time range of 100 fs to 3 ms. This allowed for the real-time tracking of the trans-cis isomerization of the chromophore in photoactive yellow protein and the associated structural changes in the protein. Science, this issue p. 725 The trans-to-cis isomerization of a key chromophore is characterized on ultrafast time scales. A variety of organisms have evolved mechanisms to detect and respond to light, in which the response is mediated by protein structural changes after photon absorption. The initial step is often the photoisomerization of a conjugated chromophore. Isomerization occurs on ultrafast time scales and is substantially influenced by the chromophore environment. Here we identify structural changes associated with the earliest steps in the trans-to-cis isomerization of the chromophore in photoactive yellow protein. Femtosecond hard x-ray pulses emitted by the Linac Coherent Light Source were used to conduct time-resolved serial femtosecond crystallography on photoactive yellow protein microcrystals over a time range from 100 femtoseconds to 3 picoseconds to determine the structural dynamics of the photoisomerization reaction.


Nature | 2016

Macromolecular diffractive imaging using imperfect crystals

Kartik Ayyer; Oleksandr Yefanov; Dominik Oberthür; Shatabdi Roy-Chowdhury; Lorenzo Galli; Valerio Mariani; Shibom Basu; Jesse Coe; Chelsie E. Conrad; Raimund Fromme; Alexander Schaffer; Katerina Dörner; Daniel James; Christopher Kupitz; Markus Metz; Garrett Nelson; Paulraj Lourdu Xavier; Kenneth R. Beyerlein; Marius Schmidt; Iosifina Sarrou; John C. Spence; Uwe Weierstall; Thomas A. White; Jay How Yang; Yun Zhao; Mengning Liang; Andrew Aquila; Mark S. Hunter; Jason E. Koglin; Sébastien Boutet

The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins—they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.


IUCrJ | 2015

A novel inert crystal delivery medium for serial femtosecond crystallography

Chelsie E. Conrad; Shibom Basu; Daniel James; Dingjie Wang; Alexander Schaffer; Shatabdi Roy-Chowdhury; Nadia A. Zatsepin; Andrew Aquila; Jesse Coe; Cornelius Gati; Mark S. Hunter; Jason E. Koglin; Christopher Kupitz; Garrett Nelson; Ganesh Subramanian; Thomas A. White; Yun Zhao; James Zook; Sébastien Boutet; Vadim Cherezov; John C. Spence; Raimund Fromme; Uwe Weierstall; Petra Fromme

Viscous sample delivery that decreases the net protein consumed in serial femtosecond crystallography is described. The agarose stream has a low background, is compatible with membrane proteins and can be used at a wide range of temperatures.


Philosophical Transactions of the Royal Society B | 2014

Microcrystallization techniques for serial femtosecond crystallography using photosystem II from Thermosynechococcus elongatus as a model system

Christopher Kupitz; Ingo Grotjohann; Chelsie E. Conrad; Shatabdi Roy-Chowdhury; Raimund Fromme; Petra Fromme

Serial femtosecond crystallography (SFX) is a new emerging method, where X-ray diffraction data are collected from a fully hydrated stream of nano- or microcrystals of biomolecules in their mother liquor using high-energy, X-ray free-electron lasers. The success of SFX experiments strongly depends on the ability to grow large amounts of well-ordered nano/microcrystals of homogeneous size distribution. While methods to grow large single crystals have been extensively explored in the past, method developments to grow nano/microcrystals in sufficient amounts for SFX experiments are still in their infancy. Here, we describe and compare three methods (batch, free interface diffusion (FID) and FID centrifugation) for growth of nano/microcrystals for time-resolved SFX experiments using the large membrane protein complex photosystem II as a model system.


Archives of Biochemistry and Biophysics | 2016

Serial femtosecond crystallography: A revolution in structural biology ☆

Jose M. Martin-Garcia; Chelsie E. Conrad; Jesse Coe; Shatabdi Roy-Chowdhury; Petra Fromme

Macromolecular crystallography at synchrotron sources has proven to be the most influential method within structural biology, producing thousands of structures since its inception. While its utility has been instrumental in progressing our knowledge of structures of molecules, it suffers from limitations such as the need for large, well-diffracting crystals, and radiation damage that can hamper native structural determination. The recent advent of X-ray free electron lasers (XFELs) and their implementation in the emerging field of serial femtosecond crystallography (SFX) has given rise to a remarkable expansion upon existing crystallographic constraints, allowing structural biologists access to previously restricted scientific territory. SFX relies on exceptionally brilliant, micro-focused X-ray pulses, which are femtoseconds in duration, to probe nano/micrometer sized crystals in a serial fashion. This results in data sets comprised of individual snapshots, each capturing Bragg diffraction of single crystals in random orientations prior to their subsequent destruction. Thus structural elucidation while avoiding radiation damage, even at room temperature, can now be achieved. This emerging field has cultivated new methods for nanocrystallogenesis, sample delivery, and data processing. Opportunities and challenges within SFX are reviewed herein.


Structural Dynamics | 2017

Structural enzymology using X-ray free electron lasers

Christopher Kupitz; Jose L. Olmos; Mark R. Holl; Lee Tremblay; Kanupriya Pande; Suraj Pandey; Dominik Oberthür; Mark S. Hunter; Mengning Liang; Andrew Aquila; Jason Tenboer; George Calvey; Andrea M. Katz; Yujie Chen; Max O. Wiedorn; Juraj Knoška; Alke Meents; Valerio Majriani; Tyler Norwood; Ishwor Poudyal; Thomas D. Grant; Mitchell D. Miller; Weijun Xu; Aleksandra Tolstikova; Andrew J. Morgan; Markus Metz; Jose M. Martin-Garcia; James Zook; Shatabdi Roy-Chowdhury; Jesse Coe

Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.


IUCrJ | 2017

Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation.

Jose M. Martin-Garcia; Chelsie E. Conrad; Garrett Nelson; Natasha Stander; Nadia A. Zatsepin; James Zook; Lan Zhu; James Geiger; Eugene Chun; David J. Kissick; Mark Hilgart; Craig M. Ogata; Andrii Ishchenko; Nirupa Nagaratnam; Shatabdi Roy-Chowdhury; Jesse Coe; Ganesh Subramanian; Alexander Schaffer; Daniel James; Gihan Ketwala; Nagarajan Venugopalan; S. Xu; Stephen Corcoran; Dale Ferguson; Uwe Weierstall; John C. Spence; Vadim Cherezov; Petra Fromme; Robert F. Fischetti; Wei Liu

In this proof-of-principle study, the feasibility of structure determination of several proteins using serial millisecond crystallography (SMX) has been evaluated. The first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported.


Scientific Reports | 2016

The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography

Petra Edlund; Heikki Takala; Elin Claesson; Léocadie Henry; Robert Dods; Heli Lehtivuori; Matthijs Panman; Kanupriya Pande; T. G. White; Takanori Nakane; Oskar Berntsson; Emil Gustavsson; Petra Båth; Vaibhav Modi; Shatabdi Roy-Chowdhury; James Zook; Peter Berntsen; Suraj Pandey; Ishwor Poudyal; Jason Tenboer; Christopher Kupitz; Anton Barty; Petra Fromme; J. D. Koralek; Tomoyuki Tanaka; John C. Spence; Mengning Liang; Mark S. Hunter; Sébastien Boutet; Eriko Nango

Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.

Collaboration


Dive into the Shatabdi Roy-Chowdhury's collaboration.

Top Co-Authors

Avatar

Christopher Kupitz

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Jesse Coe

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petra Fromme

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel James

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Raimund Fromme

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Shibom Basu

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Uwe Weierstall

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Anton Barty

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge