Shatrughan Singh
University of Delaware
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shatrughan Singh.
Biogeochemistry | 2014
Shatrughan Singh; Shreeram Inamdar; Myron J. Mitchell; Patrick J. McHale
Seasonal patterns of dissolved organic matter (DOM) were evaluated for multiple watershed sources and stream water during baseflow and stormflow to investigate the influence of hydrologic flow paths and key phenological events. Watershed sources sampled were throughfall, litter leachate, soil water, and deep groundwater. DOM data for a 4-year period (2008–2011) included: DOC concentrations and spectrofluorometric indices such as a254, humification index, protein-like and humic-like DOM. Seasons were defined as—winter (December–February), spring (March–May), summer (June–September) and autumn (October and November). Seasonal differences in DOM were most pronounced for surficial flow paths (e.g., stormflow, litter leachate, throughfall and soil water) but muted or absent for groundwater and baseflow. This was attributed to the loss of DOM by sorption on mineral soil surfaces and/or microbial breakdown. DOM in summer stormflow had higher DOC concentrations and was more humic in character versus DOM in spring and winter runoff. Storm events in early autumn produced a sharp increase in DOC concentrations and % protein-like DOM for stream waters and litter leachate. Elevated DOC concentrations for early spring throughfall were attributed to leaching of organic exudates associated with leaf emergence. Our results underscore that watershed and ecosystem studies need to pay a greater attention to surficial flow paths and runoff sources (including stormflow) for understanding seasonal patterns of DOM. Understanding the influence of phenological episodes such as autumn leaf-fall for DOM is important considering that these transitional events may be especially affected by climate change.
Journal of Ecosystems | 2013
Shatrughan Singh; Shreeram Inamdar
The composition of dissolved organic matter (DOM) in a mid-Atlantic forested watershed was evaluated using two fluorescence models—one based on previously validated model (Cory and McKnight, 2005) and the other developed specifically for our study site. DOM samples for the models were collected from multiple watershed sources over a two-year period. The previously validated parallel factor analysis (PARAFAC) model had 13 DOM components whereas our site-specific model yielded six distinct components including two terrestrial humic-like, two microbial-derived humic-like, and two protein-like components. The humic-like components were highest in surficial watershed sources and decreased from soil water to groundwater whereas the protein-like components were highest for groundwater sources. Discriminant analyses indicated that our site-specific model was more sensitive to subtle differences in DOM and the sum of the humic- and protein-like constituents yielded more pronounced differences among watershed sources as opposed to the prevalidated model. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations and selected DOM metrics were also more strongly correlated with the site-specific model components. These results suggest that while the pre-validated model may capture broader trends in DOM composition and allow comparisons with other study sites, a site-specific model will be more sensitive for characterizing within-site differences in DOM.
Journal of Geophysical Research | 2015
Shreeram Inamdar; Gurbir Singh Dhillon; Shatrughan Singh; Thomas Parr; Zhixuan Qin
Although lasting only a fraction of the year, large storms may represent a significant, but highly variable, control on watershed nitrogen (N) fluxes. We determined the exports of particulate N (PN) and total dissolved N (TDN) including nitrate-N (NO3-N) and dissolved organic N (DON) in streamflow from a 12 ha temperate forested watershed. Sampling was performed for 15 storms over September 2010 to December 2012 and included four large tropical storms – Nicole (2010), Irene and Lee (2011) and Sandy (2012). PN composed a substantial portion (39-87%) of the storm event N export with storms constituting 65% of the 2011 PN export. Tropical storm Irene alone generated 1.76 kg N ha−1 of PN which was 27% of the annual watershed N (6.43 kg N ha−1) export for 2011. In contrast, tropical storm Sandy (October 2012), yielded low sediment and PN exports, likely due to low precipitation intensity and a freshly-fallen leaf cover that may have reduced soil erosion. Streamwater concentrations of PN, NO3-N, and DON ranged from 0–17.5, 0–2.02, and 0.01–0.54 mg N L−1, respectively. Nitrate-N concentrations displayed a dilution trajectory for peak stormflows suggesting supply limitation, a response that was not as strong for PN. These results underscore the importance of large storms for PN export which is significant given that climate-change predictions indicate an increasing intensity of large tropical storms for the northeast USA. Elevated PN exports could further exacerbate water quality and eutrophication problems in sensitive aquatic ecosystems already subjected to excess dissolved nitrogen loads.
Environmental Science and Pollution Research | 2017
Shatrughan Singh; Padmanava Dash; Saurav Silwal; Gary Feng; Ardeshir Adeli; Robert J. Moorhead
Water quality of lakes, estuaries, and coastal areas serves as an indicator of the overall health of aquatic ecosystems as well as the health of the terrestrial ecosystem that drains to the water body. Land use and land cover plays not only a significant role in controlling the quantity of the exported dissolved organic matter (DOM) but also influences the quality of DOM via various biogeochemical and biodegradation processes. We examined the characteristics and spatial distribution of DOM in five major lakes, in an estuary, and in the coastal waters of the Mississippi, USA, and investigated the influence of the land use and land cover of their watersheds on the DOM composition. We employed absorption and fluorescence spectroscopy including excitation-emission matrix (EEM) combined with parallel factor (PARAFAC) analysis modeling techniques to determine optical properties of DOM and its characteristics in this study. We developed a site-specific PARAFAC model to evaluate DOM characteristics resulting in five diverse DOM compositions that included two terrestrial humic-like (C1 and C3), two microbial humic-like (C2 and C5), and one protein-like (C4) DOM. Our results showed elevated fluorescence levels of microbial humic-like or protein-like DOM in the lakes and coastal waters, while the estuarine waters showed relatively high fluorescence levels of terrestrial humic-like DOM. The results also showed that percent forest and wetland coverage explained 68 and 82% variability, respectively, in terrestrial humic-like DOM exports, while 87% variability in microbially derived humiclike DOM was explained by percent agricultural lands. Strong correlations between microbial humic-like DOM and fluorescence-derived DOM indices such as biological index (BIX) and fluorescence index (FI) indicated autochthonous characteristics in the lakes, while the estuary showed largely allochthonous DOM of terrestrial origin. We also observed higher concentrations of total dissolved phosphorous (TDP) and ammonium nitrogen (NH4-N) in coastal waters potentially due to photodegradation of refractory DOM derived from the sediment-bound organic matter in the coastal wetlands. This study highlights the relationships between the DOM compositions in the water and the land use and land cover in the watershed. The spatial variability of DOM in three different types of aquatic environments enhances the understanding of the role of land use and land cover in carbon cycling through export of organic matter to the aquatic ecosystems..
Journal of Environmental Sciences-china | 2018
M.S. Sankar; Padmanava Dash; Shatrughan Singh; YueHan Lu; Andrew E. Mercer; Shuo Chen
The objective of this research was to quantify the temporal variation of dissolved organic matter (DOM) in five distinct waterbodies in watersheds with diverse types of land use and land cover in the presence and absence of sunlight. The water bodies were an agricultural pond, a lake in a forested watershed, a man-made reservoir, an estuary, and a bay. Two sets of samples were prepared by dispensing unfiltered samples into filtered samples in 1:10 ratio (V/V). The first set was exposed to sunlight (10 hr per day for 30 days) for examining the combined effect of photo-biodegradation, while the second set was stored in dark for examining biodegradation alone. Spectroscopic measurements in tandem with multivariate statistics were used to interpret DOM lability and composition. The results suggest that the agricultural pond behaved differently compared to other study locations during degradation experiments due to the presence of higher amount of microbial humic-like and protein-like components derived from microbial/anthropogenic sources. For all samples, a larger decrease in dissolved organic carbon (DOC) concentration (10.12% ± 9.81% for photo-biodegradation and 6.65% ± 2.83% for biodegradation) and rapid transformation of DOM components (i.e., terrestrial humic-like components into microbial humic and protein-like components) were observed during photo-biodegradation experiments. Results suggest that sunlight facilitated DOM biodegradation, resulting in simpler recalcitrant molecules regardless of original composition. Overall, it was found that combined effects of light and bacteria are more efficient than bacterial effects alone in remineralizing and altering DOM, which highlights the crucial importance of sunlight in transforming aquatic DOM.
Estuaries and Coasts | 2018
Shatrughan Singh; Padmanava Dash; M.S. Sankar; Saurav Silwal; YueHan Lu; Peng Shang; Robert J. Moorhead
Changes in riverine discharge of dissolved organic matter (DOM) serves as an indicator of linkages between terrestrial ecosystem and receiving aquatic environments. In this study, we test the hypothesis that the seasonal variability of DOM in an estuary fed by a blackwater river is primarily controlled by water discharge and also modified by photochemical and biological processes. We collected surface water samples during 4-week-long field campaigns to the lower Pearl River estuary located in southeastern Louisiana, two during high discharge in spring and two during low discharge in winter and summer, respectively. DOM composition was determined using spectrofluorometric indices and a site-specific parallel factor model, and dissolved organic carbon (DOC) concentrations. Spring samples with low salinity showed higher abundance of terrestrial, humic-like DOM and higher DOC concentrations, indicating the export of flood plain-derived DOM during high discharge. In contrast, summer and winter samples with high salinity had greater proportions of labile DOM and higher biological and fluorescence indices, which may reflect enhanced photochemical and biological degradation during summer and better preservation of labile DOM in winter. Spring DOM displayed highly variable source and quality character, relative to winter and summer samples. This observation suggests that river discharge acted as a more rapid and direct control of spatial variation in DOM and photochemical and biological degradation was responsible for removing this flow-related variation between seasons. The incubation experiments showed that natural light can remove terrestrial and microbial humic DOM, while bacterial degradation was responsible for degrading protein-like DOM. Our results provide new evidence that DOM seasonality in blackwater river estuarine environments is collectively regulated by discharge and photochemical and biological degradation.
Biogeochemistry | 2012
Shreeram Inamdar; Nina Finger; Shatrughan Singh; Myron J. Mitchell; Delphis F. Levia; Harsh P. Bais; Patrick J. McHale
Journal of Geophysical Research | 2011
Shreeram Inamdar; Shatrughan Singh; Sudarshan Dutta; Delphis F. Levia; Myron J. Mitchell; Harsh P. Bais; Pat McHale
Water Resources Research | 2013
Sherman Inamdar; Gurbir Singh Dhillon; Shatrughan Singh; Sudarshan Dutta; Delphis F. Levia; Myron J. Mitchell; John T. Van Stan; Patrick J. McHale
Hydrological Processes | 2015
Shatrughan Singh; Shreeram Inamdar; Myron J. Mitchell
Collaboration
Dive into the Shatrughan Singh's collaboration.
State University of New York College of Environmental Science and Forestry
View shared research outputs