Shaun K. Wilson
University of Western Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shaun K. Wilson.
Nature | 2017
Terry P. Hughes; James T. Kerry; Mariana Álvarez-Noriega; Jorge G. Álvarez-Romero; Kristen D. Anderson; Andrew Baird; Russell C. Babcock; Maria Beger; David R. Bellwood; Ray Berkelmans; Tom C. L. Bridge; Ian R. Butler; Maria Byrne; Neal E. Cantin; Steeve Comeau; Sean R. Connolly; Graeme S. Cumming; Steven J. Dalton; Guillermo Diaz-Pulido; C. Mark Eakin; Will F. Figueira; James P. Gilmour; Hugo B. Harrison; Scott F. Heron; Andrew S. Hoey; Jean Paul A. Hobbs; Mia O. Hoogenboom; Emma V. Kennedy; Chao-Yang Kuo; Janice M. Lough
During 2015–2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs.
Proceedings of the Royal Society B: Biological Sciences | 2014
Adriana Vergés; Peter D. Steinberg; Mark E. Hay; Alistair G. B. Poore; Alexandra H. Campbell; Enric Ballesteros; Kenneth L. Heck; David J. Booth; Melinda A. Coleman; David A. Feary; Will F. Figueira; Tim J. Langlois; Ezequiel M. Marzinelli; T. Mizerek; Peter J. Mumby; Yohei Nakamura; Moninya Roughan; E. van Sebille; Alex Sen Gupta; Dan A. Smale; Fiona Tomas; Thomas Wernberg; Shaun K. Wilson
Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs.
Nature | 2015
Nicholas A. J. Graham; Simon Jennings; M. Aaron MacNeil; David Mouillot; Shaun K. Wilson
Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.
PLOS Biology | 2011
Camilo Mora; Octavio Aburto-Oropeza; Arturo Ayala Bocos; Paula M. Ayotte; Stuart Banks; Andrew G. Bauman; Maria Beger; Sandra Bessudo; David J. Booth; Eran Brokovich; Andrew J. Brooks; Pascale Chabanet; Joshua E. Cinner; Jorge Cortés; Juan José Cruz-Motta; Amílcar Leví Cupul Magaña; Edward E. DeMartini; Graham J. Edgar; David A. Feary; Sebastian C. A. Ferse; Alan M. Friedlander; Kevin J. Gaston; Charlotte Gough; Nicholas A. J. Graham; Alison Green; Hector M. Guzman; Marah J. Hardt; Michel Kulbicki; Yves Letourneur; Andres López Pérez
A global survey of reef fishes shows that the consequences of biodiversity loss are greater than previously anticipated as ecosystem functioning remained unsaturated with the addition of new species. Additionally, reefs worldwide, particularly those most diverse, are highly vulnerable to human impacts that are widespread and likely to worsen due to ongoing coastal overpopulation.
PLOS ONE | 2008
Nicholas A. J. Graham; Tim R. McClanahan; M. Aaron MacNeil; Shaun K. Wilson; Nicholas Polunin; Simon Jennings; Pascale Chabanet; Susan Clark; Mark Spalding; Yves Letourneur; Lionel Bigot; René Galzin; Marcus C. Öhman; Kajsa C. Garpe; Alasdair J. Edwards; Charles Sheppard
Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.
Current Biology | 2009
Joshua E. Cinner; Tim R. McClanahan; Nicholas A. J. Graham; Joseph Maina; Shaun K. Wilson; Terence P. Hughes
The ecosystem goods and services provided by coral reefs are critical to the social and economic welfare of hundreds of millions of people, overwhelmingly in developing countries [1]. Widespread reef degradation is severely eroding these goods and services, but the socioeconomic factors shaping the ways that societies use coral reefs are poorly understood [2]. We examine relationships between human population density, a multidimensional index of socioeconomic development, reef complexity, and the condition of coral reef fish populations in five countries across the Indian Ocean. In fished sites, fish biomass was negatively related to human population density, but it was best explained by reef complexity and a U-shaped relationship with socioeconomic development. The biomass of reef fishes was four times lower at locations with intermediate levels of economic development than at locations with both low and high development. In contrast, average biomass inside fishery closures was three times higher than in fished sites and was not associated with socioeconomic development. Sustaining coral reef fisheries requires an integrated approach that uses tools such as protected areas to quickly build reef resources while also building capacities and capital in societies over longer time frames to address the complex underlying causes of reef degradation.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Tim R. McClanahan; Nicholas A. J. Graham; M. A. MacNeil; Nyawira A. Muthiga; Joshua E. Cinner; J. H. Bruggemann; Shaun K. Wilson
Sustainably managing ecosystems is challenging, especially for complex systems such as coral reefs. This study develops critical reference points for sustainable management by using a large empirical dataset on the coral reefs of the western Indian Ocean to investigate associations between levels of target fish biomass (as an indicator of fishing intensity) and eight metrics of ecosystem state. These eight ecological metrics each exhibited specific thresholds along a continuum of fishable biomass ranging from heavily fished sites to old fisheries closures. Three thresholds lay above and five below a hypothesized window of fishable biomass expected to produce a maximum multispecies sustainable yield (BMMSY). Evaluating three management systems in nine countries, we found that unregulated fisheries often operate below the BMMSY, whereas fisheries closures and, less frequently, gear-restricted fisheries were within or above this window. These findings provide tangible management targets for multispecies coral reef fisheries and highlight key tradeoffs required to achieve different fisheries and conservation goals.
Science | 2016
Thomas Wernberg; Scott Bennett; Russell C. Babcock; Thibaut de Bettignies; Katherine Cure; Martial Depczynski; Francois Dufois; Jane Fromont; Christopher J. Fulton; Renae Hovey; Euan S. Harvey; Thomas H. Holmes; Gary A. Kendrick; Ben Radford; Julia Santana-Garcon; Benjamin J. Saunders; Dan A. Smale; Mads S. Thomsen; Chenae A. Tuckett; Fernando Tuya; Mathew A. Vanderklift; Shaun K. Wilson
No turning back? Ecosystems over time have endured much disturbance, yet they tend to remain intact, a characteristic we call resilience. Though many systems have been lost and destroyed, for systems that remain physically intact, there is debate as to whether changing temperatures will result in shifts or collapses. Wernburg et al. show that extreme warming of a temperate kelp forest off Australia resulted not only in its collapse, but also in a shift in community composition that brought about an increase in herbivorous tropical fishes that prevent the reestablishment of kelp. Thus, many systems may not be resilient to the rapid climate change that we face. Science, this issue p. 169 Rapid warming tropicalizes a temperate kelp forest. Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.
Coral Reefs | 2007
M. H. Ledlie; Nicholas A. J. Graham; John C. Bythell; Shaun K. Wilson; Simon Jennings; Nicholas Polunin; J. Hardcastle
Cousin Island marine reserve (Seychelles) has been an effectively protected no-take marine protected area (MPA) since 1968 and was shown in 1994 to support a healthy herbivorous fish assemblage. In 1998 Cousin Island reefs suffered extensive coral mortality following a coral bleaching event, and a phase shift from coral to algal dominance ensued. By 2005 mean coral cover was <1%, structural complexity had fallen and there had been a substantial increase in macroalgal cover, up to 40% in some areas. No clear trends were apparent in the overall numerical abundance and biomass of herbivorous fishes between 1994 and 2005, although smaller individuals became relatively scarce, most likely due to the loss of reef structure. Analysis of the feeding habits of six abundant and representative herbivorous fish species around Cousin Island in 2006 demonstrated that epilithic algae were the preferred food resource of all species and that macroalgae were avoided. Given the current dominance of macroalgae and the apparent absence of macroalgal consumers, it is suggested that the increasing abundance of macroalgae is reducing the probability of the system reverting to a coral dominated state.
Ecology Letters | 2011
Nicholas A. J. Graham; Pascale Chabanet; Richard D. Evans; Simon Jennings; Yves Letourneur; M. Aaron MacNeil; Tim R. McClanahan; Marcus C. Öhman; Nicholas Polunin; Shaun K. Wilson
With rapidly increasing rates of contemporary extinction, predicting extinction vulnerability and identifying how multiple stressors drive non-random species loss have become key challenges in ecology. These assessments are crucial for avoiding the loss of key functional groups that sustain ecosystem processes and services. We developed a novel predictive framework of species extinction vulnerability and applied it to coral reef fishes. Although relatively few coral reef fishes are at risk of global extinction from climate disturbances, a negative convex relationship between fish species locally vulnerable to climate change vs. fisheries exploitation indicates that the entire community is vulnerable on the many reefs where both stressors co-occur. Fishes involved in maintaining key ecosystem functions are more at risk from fishing than climate disturbances. This finding is encouraging as local and regional commitment to fisheries management action can maintain reef ecosystem functions pending progress towards the more complex global problem of stabilizing the climate.