Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaun P. Jackson is active.

Publication


Featured researches published by Shaun P. Jackson.


Journal of Thrombosis and Haemostasis | 2003

Signaling events underlying thrombus formation

Shaun P. Jackson; Warwick S. Nesbitt; Suhasini Kulkarni

Summary.u2002 Recent in vivo studies have highlighted the dynamic and complex nature of platelet thrombus growth and the requirement for multiple adhesive receptor–ligand interactions in this process. In particular, the importance of von Willebrand factor (VWF) in promoting both primary adhesion and aggregation under high shear conditions is now well established. In general, the efficiency with which platelets adhere and aggregate at sites of vessel wall injury is dependent on the synergistic action of various adhesive and soluble agonist receptors, with the contribution of each of the individual receptors dependent on the prevailing blood flow conditions. In this review, we will discuss the major platelet adhesive interactions regulating platelet thrombus formation under high shear, with specific focus on the VWF (GPIb and integrin αIIbβ3) and collagen receptors (GPVI and integrin α2β1). We will also discuss the signaling mechanisms utilized by these receptors to induce platelet activation with specific emphasis on the role of cytosolic calcium flux in regulating platelet adhesion dynamics. The role of soluble agonists in promoting thrombus growth will be highlighted and a model to explain the synergistic requirement for adhesive and soluble stimuli for efficient platelet aggregation will be discussed.


Nature Reviews Drug Discovery | 2003

Antiplatelet therapy: in search of the 'magic bullet'

Shaun P. Jackson; Simone M. Schoenwaelder

The central importance of platelets in the development of arterial thrombosis and cardiovascular disease is well established. No other single cell type is responsible for as much morbidity and mortality as the platelet and, as a consequence, it represents a major target for therapeutic intervention. The growing awareness of the importance of platelets is reflected in the increasing number of patients receiving antiplatelet therapy, a trend that is likely to continue in the future. There are, however, significant drawbacks with existing therapies, including issues related to limited efficacy and safety. The discovery of a magic bullet that selectively targets pathological thrombus formation without undermining haemostasis remains elusive, although recent progress in unravelling the molecular events regulating thrombosis has provided promising new avenues to solve this long-standing problem.


Biochemical Journal | 2007

Evidence for functional redundancy of class IA PI3K isoforms in insulin signalling

Claire Chaussade; Gordon W. Rewcastle; Jackie D. Kendall; William A. Denny; Kitty Cho; Line M. Grønning; Mei Ling Chong; Sasha H. Anagnostou; Shaun P. Jackson; Nathalie Daniele; Peter R. Shepherd

Recent genetic knock-in and pharmacological approaches have suggested that, of class IA PI3Ks (phosphatidylinositol 3-kinases), it is the p110alpha isoform (PIK3CA) that plays the predominant role in insulin signalling. We have used isoform-selective inhibitors of class IA PI3K to dissect further the roles of individual p110 isoforms in insulin signalling. These include a p110alpha-specific inhibitor (PIK-75), a p110alpha-selective inhibitor (PI-103), a p110beta-specific inhibitor (TGX-221) and a p110delta-specific inhibitor (IC87114). Although we find that p110alpha is necessary for insulin-stimulated phosphorylation of PKB (protein kinase B) in several cell lines, we find that this is not the case in HepG2 hepatoma cells. Inhibition of p110beta or p110delta alone was also not sufficient to block insulin signalling to PKB in these cells, but, when added in combination with p110alpha inhibitors, they are able to significantly attenuate insulin signalling. Surprisingly, in J774.2 macrophage cells, insulin signalling to PKB was inhibited to a similar extent by inhibitors of p110alpha, p110beta or p110delta. These results provide evidence that p110beta and p110delta can play a role in insulin signalling and also provide the first evidence that there can be functional redundancy between p110 isoforms. Further, our results indicate that the degree of functional redundancy is linked to the relative levels of expression of each isoform in the target cells.


Journal of Biological Chemistry | 1997

Calpain Cleavage of Focal Adhesion Proteins Regulates the Cytoskeletal Attachment of Integrin αIIbβ3 (Platelet Glycoprotein IIb/IIIa) and the Cellular Retraction of Fibrin Clots

Simone M. Schoenwaelder; Yuping Yuan; Prasad Cooray; Hatem Hh Salem; Shaun P. Jackson

The intracellular thiol protease calpain catalyzes the limited proteolysis of various focal adhesion structural proteins and signaling enzymes in adherent cells. In human platelets, calpain activation is dependent on fibrinogen binding to integrin αIIbβ3 and subsequent platelet aggregation, suggesting a potential role for this protease in the regulation of postaggregation responses. In this study, we have examined the effects of calpain activation on several postaggregation events in human platelets, including the cytoskeletal attachment of integrin αIIbβ3, the tyrosine phosphorylation of cytoskeletal proteins, and the cellular retraction of fibrin clots. We demonstrate that calpain activation in either washed platelets or platelet-rich plasma is associated with a marked reduction in platelet-mediated fibrin clot retraction. This relaxation of clot retraction was observed in both thrombin and ionophore A23187-stimulated platelets. Calcium dose-response studies (extracellular calcium concentrations between 0.1 μM and 1 M) revealed a strong correlation between calpain activation and relaxed clot retraction. Furthermore, pretreating platelets with the calpain inhibitors calpeptin and calpain inhibitor I prevented the calpain-mediated reduction in clot retraction. Relaxed fibrin clot retraction was associated with the cleavage of several platelet focal adhesion structural proteins and signaling enzymes, resulting in the dissociation of talin, pp60c-src, and integrin αIIbβ3 from the contractile cytoskeleton and the tyrosine dephosphorylation of multiple cytoskeletal proteins. These studies suggest an important role for calpain in the regulation of multiple postaggregation events in human platelets. The ability of calpain to inhibit clot retraction is likely to be due to the cleavage of both structural and signaling proteins involved in modulating integrin-cytoskeletal interactions.


Journal of Biological Chemistry | 1999

The von Willebrand Factor-Glycoprotein Ib/V/IX Interaction Induces Actin Polymerization and Cytoskeletal Reorganization in Rolling Platelets and Glycoprotein Ib/V/IX-transfected Cells

Yuping Yuan; Suhasini Kulkarni; Philippe Ulsemer; Susan L. Cranmer; Cindy L. Yap; Warwick S. Nesbitt; Ian Harper; Nayna Mistry; Sacha M. Dopheide; Sascha Claire Hughan; David Williamson; Hatem Hh Salem; Francois Lanza; Shaun P. Jackson

Platelet adhesion to sites of vascular injury is initiated by the binding of the platelet glycoprotein (GP) Ib-V-IX complex to matrix-bound von Willebrand factor (vWf). This receptor-ligand interaction is characterized by a rapid on-off rate that enables efficient platelet tethering and rolling under conditions of rapid blood flow. We demonstrate here that platelets adhering to immobilized vWf under flow conditions undergo rapid morphological conversion from flat discs to spiny spheres during surface translocation. Studies of Glanzmann thrombasthenic platelets (lacking integrin αIIbβ3) and Chinese hamster ovary (CHO) cells transfected with GPIb/IX (CHO-Ib/IX) confirmed that vWf binding to GPIb/IX was sufficient to induce actin polymerization and cytoskeletal reorganization independent of integrin αIIbβ3. vWf-induced cytoskeletal reorganization occurred independently of several well characterized signaling processes linked to platelet activation, including calcium influx, prostaglandin metabolism, protein tyrosine phosphorylation, activation of protein kinase C or phosphatidylinositol 3-kinase but was critically dependent on the mobilization of intracellular calcium. Studies of Oregon Green 488 1,2-bis(o-amino-5-fluorophenoxy)ethane-N,N,N′,N-tetraacetic acid tetraacetoxymethyl ester-loaded platelets and CHO-Ib/IX cells demonstrated that these cells mobilize intracellular calcium in a shear-dependent manner during surface translocation on vWf. Taken together, these studies suggest that the vWf-GPIb interaction stimulates actin polymerization and cytoskeletal reorganization in rolling platelets via a shear-sensitive signaling pathway linked to intracellular calcium mobilization.


Journal of Biological Chemistry | 2000

Synergistic Adhesive Interactions and Signaling Mechanisms Operating between Platelet Glycoprotein Ib/IX and Integrin αIIbβ3 STUDIES IN HUMAN PLATELETS AND TRANSFECTED CHINESE HAMSTER OVARY CELLS

Cindy L. Yap; Sascha Claire Hughan; Susan L. Cranmer; Warwick S. Nesbitt; Michael M. Rooney; Simon Giuliano; Suhasini Kulkarni; Sacha M. Dopheide; Yuping Yuan; Hatem H. Salem; Shaun P. Jackson

This study investigates three aspects of the adhesive interaction operating between platelet glycoprotein Ib/IX and integrin αIIbβ3. These include the following: 1) examining the sufficiency of GPIb/IX and integrin αIIbβ3 to mediate irreversible cell adhesion on immobilized von Willebrand factor (vWf) under flow; 2) the ability of the vWf-GPIb interaction to induce integrin αIIbβ3 activation independent of endogenous platelet stimuli; and 3) the identification of key second messengers linking the vWf-GPIb/IX interaction to integrin αIIbβ3 activation. By using Chinese hamster ovary cells transfected with GPIb/IX and integrin αIIbβ3, we demonstrate that these receptors are both necessary and sufficient to mediate irreversible cell adhesion under flow, wherein GPIb/IX mediates cell tethering and rolling on immobilized vWf, and integrin αIIbβ3mediates cell arrest. Moreover, we demonstrate direct signaling between GPIb/IX and integrin αIIbβ3. Studies on human platelets demonstrated that vWf binding to GPIb/IX is able to induce integrin αIIbβ3 activation independent of endogenous platelet stimuli under both static and physiological flow conditions (150–1800 s− 1). Analysis of the key second messengers linking the vWf-GPIb interaction to integrin αIIbβ3 activation demonstrated that the first step in the activation process involves calcium release from internal stores, whereas transmembrane calcium influx is a secondary event potentiating integrin αIIbβ3 activation.


Journal of Biological Chemistry | 1997

Calpain Regulation of Cytoskeletal Signaling Complexes in Von Willebrand Factor-stimulated Platelets DISTINCT ROLES FOR GLYCOPROTEIN Ib-V-IX AND GLYCOPROTEIN IIb-IIIa (INTEGRIN αIIbβ3) IN VON WILLEBRAND FACTOR-INDUCED SIGNAL TRANSDUCTION

Yuping Yuan; Sacha M. Dopheide; Chris Ivanidis; Hatem H. Salem; Shaun P. Jackson

The adhesion of platelets to sites of vascular injury is critically dependent on the binding of subendothelial bound von Willebrand factor (vWf) to the platelet surface glycoprotein complexes, GP Ib-V-IX and GP IIb-IIIa (integrin αIIbβ3). There is growing evidence that the binding of vWf to these receptors is not only essential for stable platelet adhesion but is also important for the transduction of activation signals required for changes in platelet morphology, granule secretion, and platelet aggregation. In this study we have investigated signaling events induced by vWf binding to GP Ib-V-IX in both spreading and aggregated platelets. The adhesion of platelets to vWf resulted in dramatic actin filament reorganization, as assessed by immunofluorescence with fluorescein isothiocyanate-conjugated phalloidin, and the cytoskeletal recruitment of various structural proteins (talin and integrin αIIbβ3) and signaling enzymes (pp60c- src , focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI 3-kinase), and protein-tyrosine phosphatase (PTP)-1B). Time course experiments in both spreading and aggregated platelets revealed that talin, FAK, and PTP-1B were proteolyzed after translocation to the cytoskeleton. The proteolysis of these proteins was dependent on the presence of extracellular calcium and was specifically inhibited by pretreating platelets with the membrane-permeable calpain inhibitors calpeptin, E64d, and MDL 28,170, but not with the membrane-impermeable inhibitors leupeptin, E64, and calpastatin. The cytoskeletal translocation of signaling enzymes in vWf-stimulated platelets was abolished by pretreating platelets with an anti-GP Ib-V-IX antibody but was unaffected by blocking ligand binding to integrin αIIbβ3. In contrast, calpain activation in vWf-stimulated platelets required ligand binding to both GP Ib-V-IX and integrin αIIbβ3. The activation of calpain in both spreading and aggregated platelets resulted in a substantial decrease in the level of tyrosine phosphorylation of multiple platelet proteins and was associated with a 50–80% reduction in the amount of cytoskeletal associated talin, integrin αIIbβ3, PI 3-kinase, FAK, pp60c- src , and PTP-1B. These studies suggest a potentially important role for calpain in regulating the formation and/or stability of cytoskeletal signaling complexes in vWf-stimulated platelets. Furthermore, they demonstrate distinct roles for GP Ib-V-IX and integrin αIIbβ3 in vWf-induced signal transduction.


Journal of Biological Chemistry | 1999

Glycoprotein (GP) Ib-IX-transfected cells roll on a von Willebrand factor matrix under flow. Importance of the GPib/actin-binding protein (ABP-280) interaction in maintaining adhesion under high shear.

Susan L. Cranmer; Phillippe Ulsemer; Brian M Cooke; Hatem Hh Salem; Francois Lanza; Shaun P. Jackson

Adhesion of platelets to sites of vascular injury is critical for hemostasis and thrombosis and is dependent on the binding of the vascular adhesive protein von Willebrand factor (vWf) to the glycoprotein (GP) Ib-V-IX complex on the platelet surface. A unique but poorly defined characteristic of this receptor/ligand interaction is its ability to support platelet adhesion under conditions of high shear stress. To examine the structural domains of the GPIb-V-IX complex involved in mediating cell adhesion under flow, we have expressed partial (GPIb-IX), complete (GPIb-V-IX), and mutant (GPIbα cytoplasmic tail mutants) receptor complexes on the surface of Chinese hamster ovary (CHO) cells and examined their ability to adhere to a vWf matrix in flow-based adhesion assays. Our studies demonstrate that the partial receptor complex (GPIb-IX) supports CHO cell tethering and rolling on a bovine or human vWf matrix under flow. The adhesion was specifically inhibited by an anti-GPIbα blocking antibody (AK2) and was not observed with CHO cells expressing GPIbβ and GPIX alone. The velocity of rolling was dependent on the level of shear stress, receptor density, and matrix concentration and was not altered by the presence of GPV. In contrast to selectins, which mediate cell rolling under conditions of low shear (20–200 s−1), GPIb-IX was able to support cell rolling at both venous (150 s−1) and arterial (1500–10,500 s−1) shear rates. Studies with a mutant GPIbα receptor subunit lacking the binding domain for actin-binding protein demonstrated that the association of the receptor complex with the membrane skeleton is not essential for cell tethering or rolling under low shear conditions, but is critical for maintaining adhesion at high shear rates (3000–6000 s−1). These studies demonstrate that the GPIb-IX complex is sufficient to mediate cell rolling on a vWf matrix at both venous and arterial levels of shear independent of other platelet adhesion receptors. Furthermore, our results suggest that the association between GPIbα and actin-binding protein plays an important role in enabling cells to remain tethered to a vWf matrix under conditions of high shear stress.


The International Journal of Biochemistry & Cell Biology | 2003

Class I phosphoinositide 3-kinases

Karen E. Anderson; Shaun P. Jackson

Phosphoinositide 3-kinases (PI3-kinases) are a family of enzymes that 3-phosphorylate the inositol head group of membrane phosphoinositides. They are subdivided into three major classes (I, II and III) based on their structural homology, regulation and substrate specificity. It is now becoming clear that PI3-kinase isoforms are subject to differential regulation and may play distinct roles within the cell. PI3-kinases and their second messenger lipid products have been implicated in a plethora of cellular responses with increasing evidence for involvement in the pathogenesis of human diseases. The future development of specific PI3-kinase isoform inhibitors may offer therapeutic benefit in a broad range of clinical settings, related to cancer, inflammatory and immunological diseases.


Journal of Biological Chemistry | 2002

RhoA sustains integrin αIIbβ3 adhesion contacts under high shear

Simone M. Schoenwaelder; Sascha Claire Hughan; Karen Boniface; Sujanie Fernando; Melissa Holdsworth; Philip E. Thompson; Hatem Hh Salem; Shaun P. Jackson

The small GTPase RhoA modulates the adhesive nature of many cell types; however, despite high levels of expression in platelets, there is currently limited evidence for an important role for this small GTPase in regulating platelet adhesion processes. In this study, we have examined the role of RhoA in regulating the adhesive function of the major platelet integrin, αIIbβ3. Our studies demonstrate that activation of RhoA occurs as a general feature of platelet activation in response to soluble agonists (thrombin, ADP, U46619, collagen), immobilized matrices (von Willebrand factor (vWf), fibrinogen) and high shear stress. Blocking the ligand binding function of integrin αIIbβ3, by pretreating platelets with c7E3 Fab, demonstrated the existence of integrin αIIbβ3-dependent and -independent mechanisms regulating RhoA activation. Inhibition of RhoA (C3 exoenzyme) or its downstream effector Rho kinase (Y27632) had no effect on integrin αIIbβ3 activation induced by soluble agonists or adhesive substrates, however, both inhibitors reduced shear-dependent platelet adhesion on immobilized vWf and shear-induced platelet aggregation in suspension. Detailed analysis of the sequential adhesive steps required for stable platelet adhesion on a vWf matrix under shear conditions revealed that RhoA did not regulate platelet tethering to vWf or the initial formation of integrin αIIbβ3 adhesion contacts but played a major role in sustaining stable platelet-matrix interactions. These studies define a critical role for RhoA in regulating the stability of integrin αIIbβ3adhesion contacts under conditions of high shear stress.

Collaboration


Dive into the Shaun P. Jackson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge