Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shawn D. Doran is active.

Publication


Featured researches published by Shawn D. Doran.


Drug Metabolism and Disposition | 2006

Evaluation of Cerebrospinal Fluid Concentration and Plasma Free Concentration As a Surrogate Measurement for Brain Free Concentration

Xingrong Liu; Bill J. Smith; Cuiping Chen; Ernesto Callegari; Stacey L. Becker; Xi Chen; Julie Cianfrogna; Angela C. Doran; Shawn D. Doran; John P. Gibbs; Natilie Hosea; JianHua Liu; Frederick R. Nelson; Mark A. Szewc; Jeffrey Van Deusen

This study was designed to evaluate the use of cerebrospinal fluid (CSF) drug concentration and plasma unbound concentration (Cu,plasma) to predict brain unbound concentration (Cu,brain). The concentration-time profiles in CSF, plasma, and brain of seven model compounds were determined after subcutaneous administration in rats. The Cu,brain was estimated from the product of total brain concentrations and unbound fractions, which were determined using brain tissue slice and brain homogenate methods. For theobromine, theophylline, caffeine, fluoxetine, and propranolol, which represent rapid brain penetration compounds with a simple diffusion mechanism, the ratios of the area under the curve of Cu,brain/CCSF and Cu,brain/Cu,plasma were 0.27 to 1.5 and 0.29 to 2.1, respectively, using the brain slice method, and were 0.27 to 2.9 and 0.36 to 3.9, respectively, using the brain homogenate method. A P-glycoprotein substrate, CP-141938 (methoxy-3-[(2-phenyl-piperadinyl-3-amino)-methyl]-phenyl-N-methyl-methane-sulfonamide), had Cu,brain/CCSF and Cu,brain/Cu,plasma ratios of 0.57 and 0.066, using the brain slice method, and 1.1 and 0.13, using the brain homogenate method, respectively. The slow brain-penetrating compound, N[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl-]sarcosine, had Cu,brain/CCSF and Cu,brain/Cu,plasma ratios of 0.94 and 0.12 using the brain slice method and 0.15 and 0.018 using the brain homogenate method, respectively. Therefore, for quick brain penetration with simple diffusion mechanism compounds, CCSF and Cu,plasma represent Cu,brain equally well; for efflux substrates or slow brain penetration compounds, CCSF appears to be equivalent to or more accurate than Cu,plasma to represent Cu,brain. Thus, we hypothesize that CCSF is equivalent to or better than Cu,plasma to predict Cu,brain. This hypothesis is supported by the literature data.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis and SAR of 1,2,3,4-tetrahydroisoquinolin-1-ones as novel G-protein-coupled receptor 40 (GPR40) antagonists.

Paul S. Humphries; John William Benbow; Paul D. Bonin; David Boyer; Shawn D. Doran; Richard K. Frisbie; David W. Piotrowski; Gayatri Balan; Bruce M. Bechle; Edward L. Conn; Kenneth J. DiRico; Robert M. Oliver; Walter C. Soeller; James A. Southers; Xiaojing Yang

The development of a series of novel 1,2,3,4-tetrahydroisoquinolin-1-ones as antagonists of G protein-coupled receptor 40 (GPR40) is described. The synthesis, in vitro inhibitory values for GPR40, in vitro microsomal clearance and rat in vivo clearance data are discussed. Initial hits displayed high rat in vivo clearances that were higher than liver blood flow. Optimization of rat in vivo clearance was achieved and led to the identification of 15i, whose rat oral pharmacokinetic data is reported.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery of small molecule isozyme non-specific inhibitors of mammalian acetyl-CoA carboxylase 1 and 2.

Jeffrey W. Corbett; Kevin Daniel Freeman-Cook; Richard L. Elliott; Felix Vajdos; Francis Rajamohan; D Kohls; Eric S. Marr; Hailong Zhang; Liang Tong; Meihua Tu; S Murdande; Shawn D. Doran; Janet A. Houser; Wei Song; C.J Jones; Steven B. Coffey; Leanne M. Buzon; Martha L. Minich; Kenneth J. DiRico; Susan Tapley; R.K. McPherson; E Sugarman; H.J Harwood; William Paul Esler

Screening Pfizers compound library resulted in the identification of weak acetyl-CoA carboxylase inhibitors, from which were obtained rACC1 CT-domain co-crystal structures. Utilizing HTS hits and structure-based drug discovery, a more rigid inhibitor was designed and led to the discovery of sub-micromolar, spirochromanone non-specific ACC inhibitors. Low nanomolar, non-specific ACC-isozyme inhibitors that exhibited good rat pharmacokinetics were obtained from this chemotype.


Journal of Medicinal Chemistry | 2015

Utilizing Structures of CYP2D6 and BACE1 Complexes To Reduce Risk of Drug-Drug Interactions with a Novel Series of Centrally Efficacious BACE1 Inhibitors.

Michael Aaron Brodney; Elizabeth Mary Beck; Christopher Ryan Butler; Gabriela Barreiro; Eric F. Johnson; David Riddell; Kevin D. Parris; Charles E. Nolan; Ying Fan; Kevin Atchison; Cathleen Gonzales; Ashley Robshaw; Shawn D. Doran; Mark W. Bundesmann; Leanne M. Buzon; Jason K. Dutra; Kevin E. Henegar; Erik LaChapelle; Xinjun Hou; Bruce N. Rogers; Jayvardhan Pandit; Ricardo Lira; Luis Martinez-Alsina; Peter Mikochik; John C. Murray; Kevin Ogilvie; Loren Price; Subas M. Sakya; Aijia Yu; Yong Zhang

In recent years, the first generation of β-secretase (BACE1) inhibitors advanced into clinical development for the treatment of Alzheimer’s disease (AD). However, the alignment of drug-like properties and selectivity remains a major challenge. Herein, we describe the discovery of a novel class of potent, low clearance, CNS penetrant BACE1 inhibitors represented by thioamidine 5. Further profiling suggested that a high fraction of the metabolism (>95%) was due to CYP2D6, increasing the potential risk for victim-based drug–drug interactions (DDI) and variable exposure in the clinic due to the polymorphic nature of this enzyme. To guide future design, we solved crystal structures of CYP2D6 complexes with substrate 5 and its corresponding metabolic product pyrazole 6, which provided insight into the binding mode and movements between substrate/inhibitor complexes. Guided by the BACE1 and CYP2D6 crystal structures, we designed and synthesized analogues with reduced risk for DDI, central efficacy, and improved hERG therapeutic margins.


Journal of Medicinal Chemistry | 2012

Maximizing lipophilic efficiency: the use of Free-Wilson analysis in the design of inhibitors of acetyl-CoA carboxylase.

Kevin Daniel Freeman-Cook; Paul Amor; Scott Bader; Leanne M. Buzon; Steven B. Coffey; Jeffrey W. Corbett; Kenneth J. DiRico; Shawn D. Doran; Richard L. Elliott; William Esler; Angel Guzman-Perez; Kevin E. Henegar; Janet A. Houser; Christopher S. Jones; Chris Limberakis; Katherine Loomis; Kirk McPherson; Sharad Murdande; Kendra Louise Nelson; Dennis Paul Phillion; Betsy S. Pierce; Wei Song; Eliot Sugarman; Susan Tapley; Meihua Tu; Zhengrong Zhao

This paper describes the design and synthesis of a novel series of dual inhibitors of acetyl-CoA carboxylase 1 and 2 (ACC1 and ACC2). Key findings include the discovery of an initial lead that was modestly potent and subsequent medicinal chemistry optimization with a focus on lipophilic efficiency (LipE) to balance overall druglike properties. Free-Wilson methodology provided a clear breakdown of the contributions of specific structural elements to the overall LipE, a rationale for prioritization of virtual compounds for synthesis, and a highly successful prediction of the LipE of the resulting analogues. Further preclinical assays, including in vivo malonyl-CoA reduction in both rat liver (ACC1) and rat muscle (ACC2), identified an advanced analogue that progressed to regulatory toxicity studies.


Journal of Medicinal Chemistry | 2015

Discovery of a Series of Efficient, Centrally Efficacious BACE1 Inhibitors through Structure-Based Drug Design.

Christopher Ryan Butler; Michael Aaron Brodney; Elizabeth Mary Beck; Gabriela Barreiro; Charles E. Nolan; Feng Pan; Felix Vajdos; Kevin Parris; Alison H. Varghese; Christopher John Helal; Ricardo Lira; Shawn D. Doran; David Riddell; Leanne M. Buzon; Jason K. Dutra; Luis Martinez-Alsina; Kevin Ogilvie; John C. Murray; Joseph M. Young; Kevin Atchison; Ashley Robshaw; Cathleen Gonzales; Jinlong Wang; Yong Zhang; Brian T. O’Neill

The identification of centrally efficacious β-secretase (BACE1) inhibitors for the treatment of Alzheimers disease (AD) has historically been thwarted by an inability to maintain alignment of potency, brain availability, and desired absorption, distribution, metabolism, and excretion (ADME) properties. In this paper, we describe a series of truncated, fused thioamidines that are efficiently selective in garnering BACE1 activity without simultaneously inhibiting the closely related cathepsin D or negatively impacting brain penetration and ADME alignment, as exemplified by 36. Upon oral administration, these inhibitors exhibit robust brain availability and are efficacious in lowering central Amyloid β (Aβ) levels in mouse and dog. In addition, chronic treatment in aged PS1/APP mice effects a decrease in the number and size of Aβ-derived plaques. Most importantly, evaluation of 36 in a 2-week exploratory toxicology study revealed no accumulation of autofluorescent material in retinal pigment epithelium or histology findings in the eye, issues observed with earlier BACE1 inhibitors.


Journal of Medicinal Chemistry | 2014

Decreasing the Rate of Metabolic Ketone Reduction in the Discovery of a Clinical Acetyl-CoA Carboxylase Inhibitor for the Treatment of Diabetes

David A. Griffith; Daniel W. Kung; William Esler; Paul Amor; Scott W. Bagley; Carine Beysen; Santos Carvajal-Gonzalez; Shawn D. Doran; Chris Limberakis; Alan M. Mathiowetz; Kirk McPherson; David A. Price; Eric Ravussin; Gabriele Sonnenberg; James A. Southers; Laurel Sweet; Scott M. Turner; Felix Vajdos

Acetyl-CoA carboxylase (ACC) inhibitors offer significant potential for the treatment of type 2 diabetes mellitus (T2DM), hepatic steatosis, and cancer. However, the identification of tool compounds suitable to test the hypothesis in human trials has been challenging. An advanced series of spirocyclic ketone-containing ACC inhibitors recently reported by Pfizer were metabolized in vivo by ketone reduction, which complicated human pharmacology projections. We disclose that this metabolic reduction can be greatly attenuated through introduction of steric hindrance adjacent to the ketone carbonyl. Incorporation of weakly basic functionality improved solubility and led to the identification of 9 as a clinical candidate for the treatment of T2DM. Phase I clinical studies demonstrated dose-proportional increases in exposure, single-dose inhibition of de novo lipogenesis (DNL), and changes in indirect calorimetry consistent with increased whole-body fatty acid oxidation. This demonstration of target engagement validates the use of compound 9 to evaluate the role of DNL in human disease.


Bioorganic & Medicinal Chemistry Letters | 2009

(3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone: A potent, selective, orally active dipeptidyl peptidase IV inhibitor

Mark Ammirati; Kim M. Andrews; David Boyer; Anne M. Brodeur; Dennis E. Danley; Shawn D. Doran; Bernard Hulin; Shenping Liu; R.K. McPherson; Stephen J. Orena; Janice C. Parker; Jana Polivkova; Xiayang Qiu; Carolyn B. Soglia; Judith L. Treadway; Maria A. Vanvolkenburg; D.C Wilder; David W. Piotrowski

A series of 4-substituted proline amides was synthesized and evaluated as inhibitors of dipeptidyl pepdidase IV for the treatment of type 2 diabetes. (3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone (5) emerged as a potent (IC(50) = 13 nM) and selective compound, with high oral bioavailability in preclinical species and low plasma protein binding. Compound 5, PF-00734200, was selected for development as a potential new treatment for type 2 diabetes.


Bioorganic & Medicinal Chemistry Letters | 1999

A new class of selective and potent inhibitors of neuronal nitric oxide synthase.

John A. Lowe; Weimin Qian; Robert A. Volkmann; Steven D. Heck; Jolanta Nowakowski; Robert B. Nelson; Charles E. Nolan; Dane Liston; Karen M. Ward; Stevin H. Zorn; Celeste Johnson; Michelle Vanase; W. Stephen Faraci; Kimberly A. Verdries; James Baxter; Shawn D. Doran; Martin Sanders; Mike Ashton; Peter John Whittle; Mark H. Stefaniak

The synthesis and SAR of a series of 6-(4-(substituted)phenyl)-2-aminopyridines as inhibitors of nitric oxide synthase are described. Compound 3a from this series shows potent and selective inhibition of the human nNOS isoform, with pharmacokinetics sufficient to provide in vivo inhibition of nNOS activity.


Bioorganic & Medicinal Chemistry Letters | 2011

1,5-Substituted nipecotic amides: Selective PDE8 inhibitors displaying diastereomer-dependent microsomal stability

Michael Paul Deninno; Stephen W. Wright; Michael Scott Visser; John B. Etienne; Dianna E. Moore; Thanh V. Olson; Benjamin N. Rocke; Melissa P. Andrews; Cynthia Zarbo; Michele L. Millham; Brian P. Boscoe; David Boyer; Shawn D. Doran; Karen L. Houseknecht

The first highly potent and selective PDE8 inhibitors are disclosed. The initial tetrahydroisoquinoline hit was transformed into a nipecotic amide series in order to address a reactive metabolite issue. Reduction of lipophilicity to address metabolic liabilities uncovered an interesting diastereomer-dependent trend in turnover by human microsomes.

Collaboration


Dive into the Shawn D. Doran's collaboration.

Researchain Logo
Decentralizing Knowledge