Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shawn D. Hicks is active.

Publication


Featured researches published by Shawn D. Hicks.


Journal of Cerebral Blood Flow and Metabolism | 2000

Hypothermia during Reperfusion after Asphyxial Cardiac Arrest Improves Functional Recovery and Selectively Alters Stress-Induced Protein Expression

Shawn D. Hicks; Donald B. DeFranco; Clifton W. Callaway

This study examined whether prolonged hypothermia induced 1 hour after resuscitation from asphyxial cardiac arrest would improve neurologic outcome and alter levels of stress-related proteins in rats. Rats were resuscitated from 8 minutes of asphyxia resulting in cardiac arrest. Brain temperature was regulated after resuscitation in three groups: normothermia (36.8°C × 24 hours), immediate hypothermia (33°C × 24 hours, beginning immediately after resuscitation), and delayed hypothermia (33°C × 24 hours, beginning 60 minutes after resuscitation). Mortality and neurobehavioral deficits were improved in immediate and delayed hypothermia rats relative to normothermia rats. Furthermore, both immediate and delayed hypothermia improved neuronal survival in the CA1 region of the hippocampus assessed at 14 days. In normothermia rats, the 70-kDa heat shock protein (Hsp70) and 40-kDa heat shock protein (Hsp40) were increased within 12 hours after resuscitation in the hippocampus. Delayed hypothermia attenuated the increase in Hsp70 levels in the hippocampus but did not affect Hsp70 induction in the cerebellum. Hippocampal expression of Hsp40 was not affected by hypothermia. These data indicate that prolonged hypothermia during later reperfusion improves neurologic outcome after experimental global ischemia and is associated with selective changes in the pattern of stress-induced protein expression.


Critical Care Medicine | 2000

Delayed, spontaneous hypothermia reduces neuronal damage after asphyxial cardiac arrest in rats.

Robert W. Hickey; Howard Ferimer; Henry Alexander; Robert H. Garman; Clifton W. Callaway; Shawn D. Hicks; Peter Safar; Steven H. Graham; Patrick M. Kochanek

ObjectiveCore temperature is reduced spontaneously after asphyxial cardiac arrest in rats. To determine whether spontaneous hypothermia influences neurologic damage after asphyxial arrest, we compared neurologic outcome in rats permitted to develop spontaneous hypothermia vs. rats managed with controlled normothermia. InterventionsMale Sprague-Dawley rats were asphyxiated for 8 mins and resuscitated. After extubation, a cohort of rats was managed with controlled normothermia (CN) by placement in a servo-controlled incubator set to maintain rectal temperature at 37.4°C for 48 hrs. CN rats were compared with permissive hypothermia (PH) rats that were returned to an ambient temperature environment after extubation. Rats were killed at either 72 hrs (PH72hr, n = 14; CN72hr, n = 9) or 6 wks (PH6wk, n = 6, CN6wk, n = 6) after resuscitation. PH72 rats were historic controls for the CN72 rats, whereas PH6 and CN6 rats were randomized and studied contemporaneously. MeasurementsA clinical neurodeficit score (NDS) was determined daily. A pathologist blinded to group scored 40 hematoxylin and eosin -stained brain regions for damage by using a 5-point scale (0 = none, 5 = severe). Quantitative analysis of CA1 hippocampus injury was performed by counting normal-appearing neurons in a defined subsection of CA1. Main ResultsMean rectal temperatures measured in the PH6wk rats (n = 6) were 36.9, 34.8, 35.5, 36.7, and 37.4°C at 2, 8, 12, 24, and 36 hrs, respectively. Mortality rate (before termination) was lower in PH compared with CN (0/20 vs. 7/15;p < .005). PH demonstrated a more favorable progression of NDS (p = .04) and less weight loss (p < .005) compared with CN. Median histopathology scores were lower (less damage) in PH72hr vs. CN72hr for temporal cortex (0 vs. 2.5), parietal cortex (0 vs. 2), thalamus (0 vs. 3), CA1 hippocampus (1.5 vs. 4.5), CA2 hippocampus (0 vs. 3.5), subiculum (0 vs. 4), and cerebellar Purkinje cell layer (2 vs. 4) (all p < .05). There was almost complete loss of normal-appearing CA1 neurons in CN72hr rats (6 ± 2 [mean ± sd] normal neurons compared with 109 ± 12 in naïve controls). In contrast, PH72hr rats demonstrated marked protection (97 ± 23 normal-appearing neurons) that was still evident, although attenuated, at 6 wks (42 ± 24 normal-appearing neurons, PH6wk). ConclusionRats resuscitated from asphyxial cardiac arrest develop delayed, mild to moderate, prolonged hypothermia that is neuroprotective.


Journal of Cerebral Blood Flow and Metabolism | 2002

Hypothermic Reperfusion after Cardiac Arrest Augments Brain-Derived Neurotrophic Factor Activation

Brian J. D'Cruz; Kristofer C. Fertig; Anthony J. Filiano; Shawn D. Hicks; Donald B. DeFranco; Clifton W. Callaway

Induction of mild hypothermia improves neurologic outcome after global cerebral ischemia. This study measured levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in hippocampal tissue of rats after resuscitation from 8 minutes of normothermic, asphyxial cardiac arrest. After resuscitation, rats were maintained either at normal temperature (37°C) or cooled to mild hypothermia (33°C, beginning 60 minutes after resuscitation). After 12 or 24 hours, neurotrophin levels in hippocampus were measured by immunoblotting. Ischemia and reperfusion increased hippocampal levels of BDNF. Induction of hypothermia during reperfusion potentiated the increase in BDNF after 24 hours, but not after 12 hours. Levels of NGF were not increased by postresuscitation hypothermia. Hypothermia also increased tissue levels and tyrosine phosphorylation of TrkB, the receptor for BDNF. Increased BDNF levels were correlated with activation of the extracellularly regulated kinase (ERK), a downstream element in the signal transduction cascade induced by BDNF. In contrast to the many deleterious processes during ischemia and reperfusion that are inhibited by induced hypothermia, increasing BDNF levels is a potentially restorative process that is augmented. Increased activation of BDNF signaling is a possible mechanism by which mild hypothermia is able to reduce the neuronal damage typically occurring after cardiac arrest.


Anesthesiology | 2009

Lipid Emulsion Combined with Epinephrine and Vasopressin Does Not Improve Survival in a Swine Model of Bupivacaine-induced Cardiac Arrest

Shawn D. Hicks; David D. Salcido; Eric S. Logue; Brian Suffoletto; Philip E. Empey; Samuel M. Poloyac; Donald R. Miller; Clifton W. Callaway; James J. Menegazzi

Background:This study sought to evaluate the efficacy of lipid emulsion in reversing bupivacaine-induced cardiovascular collapse when added to a resuscitation protocol that included the use of epinephrine and vasopressin. Methods:After induction of general anesthesia and instrumentation, 19 mixed-breed domestic swine had cardiovascular collapse induced by an intravenous bolus of 10 mg/kg bupivacaine. After 5 min of resuscitation including chest compressions, epinephrine (100 &mgr;g/kg) and vasopressin (1.5 U/kg), animals were randomized to receive either a bolus of 20% lipid emulsion (4 ml/kg) followed by a continuous infusion (0.5 ml · kg−1 · min−1) or an equal volume of saline. Investigators were blinded to the treatment assignment. The primary endpoint was return of spontaneous circulation (mean arterial pressure of at least 60 mmHg for at least 1 min). Results:Treatment groups were similar with respect to baseline measurements of weight, sex, and hemodynamic and metabolic variables. The rates of return of spontaneous circulation were similar between groups: (3 of 10) in the lipid group and 4 of 9 in the saline group (P = 0.65). Total serum bupivacaine concentrations were higher in the lipid group at the 10-min timepoint (mean ± SEM: 23.13 ± 5.37 ng/ml vs. 15.33 ± 4.04 ng/ml, P = 0.004). More norepinephrine was required in the lipid group compared to the saline group to maintain a mean arterial pressure above 60 mmHg during the 60-min survival period (mean ± SEM: 738.6 ± 94.4 vs.. 487.3 ± 171.0 &mgr;g). Conclusions:In this swine model, lipid emulsion did not improve rates of return of spontaneous circulation after bupivacaine-induced cardiovascular collapse.


Resuscitation | 1999

Normoxic ventilation during resuscitation and outcome from asphyxial cardiac arrest in rats.

Christopher Lipinski; Shawn D. Hicks; Clifton W. Callaway

The formation of reactive oxygen species during reperfusion is one trigger for neuronal injury after global cerebral ischemia. Because formation of reactive oxygen species requires delivery of molecular oxygen to ischemic tissue, restricting inspired oxygen during reperfusion may decrease neurological damage. This study examined whether ventilation with room air rather than pure oxygen during resuscitation would improve neurological recovery after cardiac arrest in rats. Adult, male rats were subjected to 8 min of asphyxia resulting in cardiac arrest. During resuscitation, rats were ventilated either with hyperoxia (FiO2 = 1.0) or normoxia (FiO2 = 0.21, room air). Neurobehavioral deficits were scored daily for 72 h after resuscitation, after which brains were collected for histology. Normoxia decreased arterial oxygen content. Other physiological parameters and mortality did not differ between groups. All surviving rats exhibited behavioral and histological signs of brain damage. Neurological deficit scores did not differ between normoxia and hyperoxia conditions at any time point. The number of ischemic neurons in the hippocampus also did not differ between groups. These data indicate neither benefit nor detriment of reducing inspired oxygen concentration during resuscitation from asphyxial cardiac arrest in rats.


Journal of Neurochemistry | 1999

Geldanamycin Provides Posttreatment Protection Against Glutamate-Induced Oxidative Toxicity in a Mouse Hippocampal Cell Line

Nianqing Xiao; Clifton W. Callaway; Christopher A. Lipinski; Shawn D. Hicks; Donald B. DeFranco

Abstract : The benzoquinoid ansamycin geldanamycin interferes with many cell signaling pathways and is currently being evaluated as an anticancer agent. The main intracellular target of geldanamycin is the 90‐kDa heat shock protein, hsp90. In this report we demonstrate that geldanamycin is effective at preventing glutamate‐induced oxidative toxicity in the HT22 mouse hippocampal cell line, even if given 4 h after glutamate treatment. Geldanamycin prevents glutamate‐induced internucleosomal DNA cleavage in the HT22 cells but does not reverse the depletion of glutathione levels brought about by glutamate treatment. Both anabolic and catabolic effects are generated by geldanamycin treatment of HT22 cells, as evidenced by the induction of hsp70 expression and degradation of c‐Raf‐1 protein, respectively. Thus, geldanamycin may provide an effective strategy for manipulating signaling pathways in neuronal cells that use hsp90 as they proceed through a programmed cell death pathway in response to oxidative stress.


Neuroscience | 2000

Hypothermia differentially increases extracellular signal-regulated kinase and stress-activated protein kinase/c-Jun terminal kinase activation in the hippocampus during reperfusion after asphyxial cardiac arrest.

Shawn D. Hicks; K.T. Parmele; Donald B. DeFranco; Eric Klann; Clifton W. Callaway

Mitogen-activated protein kinases are signal transduction mediators that have been implicated in cell survival and cell death. This study characterized the activation of pathways in the hippocampus during reperfusion after global cerebral ischemia, as well as the influence of a regimen of hypothermia that reduces ischemic cell death in the hippocampus. Circulatory arrest was induced in rats by 8 min of asphyxia. Relative levels of phosphorylated and total extracellular signal-regulated kinase, stress-activated protein kinase/c-Jun N-terminal kinase and p38 mitogen-activated protein kinase were measured in the hippocampus after 6, 12 or 24h of reperfusion using immunoblotting. Asphyxia induced a progressive increase in phosphorylated extracellular signal-regulated kinase and stress-activated protein kinase/c-Jun N-terminal kinase, but no change in phosphorylated p38 mitogen-activated protein kinase. Induction of mild hypothermia (33 degrees C) during reperfusion increased extracellular signal-regulated kinase phosphorylation and produced a smaller increase in stress-activated protein kinase/c-Jun N-terminal kinase phosphorylation at 24h. Hypothermia did not alter extracellular signal-regulated kinase activation in rats not subjected to ischemia. Extracellular signal-regulated kinase activation was associated with an increase in phosphorylation of the mitogen-activated protein kinase kinase 1/2, and was inhibited by administration of the specific mitogen-activated protein kinase kinase 1/2 inhibitor SL327. Immunohistochemical staining showed an increase in active extracellular signal-regulated kinase in the CA1, CA2, CA3 and dentate gyrus regions of the hippocampus after ischemia and reperfusion. In contrast, active stress-activated protein kinase/c-Jun N-terminal kinase immunoreactivity was most intense in the CA3 and dentate gyrus regions. These data demonstrate that both extracellular signal-regulated kinase and stress-activated protein kinase/c-Jun N-terminal kinase pathways are activated during the first 24h of reperfusion after global cerebral ischemia, and that hypothermia increases the activation of extracellular signal-regulated kinase relative to stress-activated protein kinase/c-Jun N-terminal kinase. Thus, an increase in extracellular signal-regulated kinase activation may be associated with improved neuronal survival after ischemic injury.


Neuroscience Letters | 2004

Regional changes in glial cell line-derived neurotrophic factor after cardiac arrest and hypothermia in rats

Katherine M. Schmidt; Melissa J. Repine; Shawn D. Hicks; Donald B. DeFranco; Clifton W. Callaway

Hypothermia after resuscitation from cardiac arrest reduces functional and histological brain injury. Stimulation of neurotrophic factors may contribute to the beneficial effects of hypothermia. This study examined the effects of cardiac arrest and induced hypothermia on regional levels of glial cell line-derived neurotrophic factor (GDNF) over the first 24 h after rat cardiac arrest. Hypothermia increased GDNF in hippocampus at 6 h, but did not prevent a subsequent decline in hippocampal GDNF. In contrast, hypothermia prevented early increases in cortical levels of GDNF at 3 and 6 h. Cerebellar GDNF increased slightly over 24 h in hypothermia-treated rats, but brainstem levels of GDNF did not change in response to cardiac arrest or hypothermia. These results suggest that temperature after resuscitation produces regionally specific changes of GNDF levels in brain.


Prehospital Emergency Care | 1998

ANTICHOLINERGIC SYNDROME PRECIPITATED BY OPIOID REVERSAL

Shawn D. Hicks; Allan B. Wolfson; Brent R. Asplin; Christopher A. Lipinski; Clifton W. Callaway


Critical Care Medicine | 2014

867: PEDIATRIC DENTAL PROCEDURES

Sheikh Ahmed; LaQuia Walker; Shawn D. Hicks; James E. Slaven; Mara Nitu

Collaboration


Dive into the Shawn D. Hicks's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheikh Ahmed

Riley Hospital for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony J. Filiano

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge