Shawn D. Mansfield
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shawn D. Mansfield.
Biotechnology Progress | 1999
Shawn D. Mansfield; Caitriona Mooney; John N. Saddler
The ability and, consequently, the limitations of various microbial enzyme systems to completely hydrolyze the structural polysaccharides of plant cell walls has been the focus of an enormous amount of research over the years. As more and more of these extracellular enzymatic systems are being identified and characterized, clear similarities and differences are being elucidated. Although much has been learned concerning the structures, kinetics, catalytic action, and interactions of enzymes and their substrates, no single mechanism of total lignocellulosic saccharification has been established. The heterogeneous nature of the supramolecular structures of naturally occurring lignocellulosic matrices make it difficult to fully understand the interactions that occur between enzyme complexes and these substrates. However, it is apparent that the efficacy of enzymatic complexes to hydrolyze these substrates is inextricably linked to the innate structural characteristics of the substrate and/or the modifications that occur as saccharification proceeds. This present review is not intended to conclusively answer what factors control polysaccharide biodegradation, but to serve as an overview illustrating some of the potential enzymatic and structural limitations that invariably influence the complete hydrolysis of lignocellulosic polysaccharides.
Bioresource Technology | 1998
Caitriona Mooney; Shawn D. Mansfield; Maria G. Touhy; John N. Saddler
Four Douglas-fir pulps, a refiner mechanical pulp (RMP), sulphonated RMP, delignified RMP and a kraft pulp were used to determine whether the lignin content and initial pore volume affected cellulase adsorption and substrate hydrolysis. When compared on the basis of lignin content, it was apparent from the cellulase treatment of the sulphonated RMP that the proportion of lignin did not affect enzyme adsorption when the fibres were sufficiently swollen. However, it was observed that the initial adsorption of cellulase does not always translate to fast and complete hydrolysis. Pore volume data revealed that although modification of lignin resulted in a dramatically increased fibre saturation point the median pore width was not increased accordingly. In contrast, the delignified RMP had a higher median pore width and was hydrolyzed more completely, suggesting that steric hindrance from the residual lignin may be the rate limiting characteristic in this situation. Hydrolysis of the kraft pulp indicated that the larger average particle size of this substrate might have been an inhibiting factor, since it was hydrolyzed more slowly than the delignified RMP despite having a higher median pore width and lower lignin content.
The Plant Cell | 2007
Jean-Charles Leplé; Rebecca Dauwe; Kris Morreel; Veronique Storme; Catherine Lapierre; Brigitte Pollet; Annette Naumann; Kyu-Young Kang; Hoon Kim; Katia Ruel; Andrée Lefèbvre; Jean-Paul Joseleau; Jacqueline Grima-Pettenati; Riet De Rycke; Sara Andersson-Gunnerås; Alexander Erban; Ines Fehrle; Michel Petit-Conil; Joachim Kopka; Andrea Polle; Eric Messens; Björn Sundberg; Shawn D. Mansfield; John Ralph; Gilles Pilate; Wout Boerjan
Cinnamoyl-CoA reductase (CCR) catalyzes the penultimate step in monolignol biosynthesis. We show that downregulation of CCR in transgenic poplar (Populus tremula × Populus alba) was associated with up to 50% reduced lignin content and an orange-brown, often patchy, coloration of the outer xylem. Thioacidolysis, nuclear magnetic resonance (NMR), immunocytochemistry of lignin epitopes, and oligolignol profiling indicated that lignin was relatively more reduced in syringyl than in guaiacyl units. The cohesion of the walls was affected, particularly at sites that are generally richer in syringyl units in wild-type poplar. Ferulic acid was incorporated into the lignin via ether bonds, as evidenced independently by thioacidolysis and by NMR. A synthetic lignin incorporating ferulic acid had a red-brown coloration, suggesting that the xylem coloration was due to the presence of ferulic acid during lignification. Elevated ferulic acid levels were also observed in the form of esters. Transcript and metabolite profiling were used as comprehensive phenotyping tools to investigate how CCR downregulation impacted metabolism and the biosynthesis of other cell wall polymers. Both methods suggested reduced biosynthesis and increased breakdown or remodeling of noncellulosic cell wall polymers, which was further supported by Fourier transform infrared spectroscopy and wet chemistry analysis. The reduced levels of lignin and hemicellulose were associated with an increased proportion of cellulose. Furthermore, the transcript and metabolite profiling data pointed toward a stress response induced by the altered cell wall structure. Finally, chemical pulping of wood derived from 5-year-old, field-grown transgenic lines revealed improved pulping characteristics, but growth was affected in all transgenic lines tested.
Nature Protocols | 2012
Shawn D. Mansfield; Hoon Kim; Fachuang Lu; John Ralph
Recent advances in nuclear magnetic resonance (NMR) technology have made it possible to rapidly screen plant material and discern whole cell wall information without the need to deconstruct and fractionate the plant cell wall. This approach can be used to improve our understanding of the biology of cell wall structure and biosynthesis, and as a tool to select plant material for the most appropriate industrial applications. This is particularly true in an era when renewable materials are vital to the emerging bio-based economies. This protocol describes procedures for (i) the preparation and extraction of a biological plant tissue, (ii) solubilization strategies for plant material of varying composition and (iii) 2D NMR acquisition (for typically 15 min–5 h) and integration methods used to elucidate lignin subunit composition and lignin interunit linkage distribution, as well as cell wall polysaccharide profiling. Furthermore, we present data that demonstrate the utility of this new NMR whole cell wall characterization procedure with a variety of degradative methods traditionally used for cell wall compositional analysis.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Heather D. Coleman; Jimmy Yan; Shawn D. Mansfield
Overexpression of the Gossypium hirsutum sucrose synthase (SuSy) gene under the control of 2 promoters was examined in hybrid poplar (Populus alba × grandidentata). Analysis of RNA transcript abundance, enzyme activity, cell wall composition, and soluble carbohydrates revealed significant changes in the transgenic lines. All lines showed significantly increased SuSy enzyme activity in developing xylem. This activity manifested in altered secondary cell wall cellulose content per dry weight in all lines, with increases of 2% to 6% over control levels, without influencing plant growth. The elevated concentration of cellulose was associated with an increase in cell wall crystallinity but did not alter secondary wall microfibril angle. This finding suggests that the observed increase in crystallinity is a function of altered carbon partitioning to cellulose biosynthesis rather than the result of tension wood formation. Furthermore, the augmented deposition of cellulose in the transgenic lines resulted in thicker xylem secondary cell wall and consequently improved wood density. These findings clearly implicate SuSy as a key regulator of sink strength in poplar trees and demonstrate the tight association of SuSy with cellulose synthesis and secondary wall formation.
Plant Physiology | 2009
Jaclyn J. Stewart; Takuya Akiyama; Clint Chapple; John Ralph; Shawn D. Mansfield
Poplar (Populus tremula × alba) lignins with exceedingly high syringyl monomer levels are produced by overexpression of the ferulate 5-hydroxylase (F5H) gene driven by a cinnamate 4-hydroxylase (C4H) promoter. Compositional data derived from both standard degradative methods and NMR analyses of the entire lignin component (as well as isolated lignin fraction) indicated that the C4H∷F5H transgenics lignin was comprised of as much as 97.5% syringyl units (derived from sinapyl alcohol), the remainder being guaiacyl units (derived from coniferyl alcohol); the syringyl level in the wild-type control was 68%. The resultant transgenic lignins are more linear and display a lower degree of polymerization. Although the crucial β-ether content is similar, the distribution of other interunit linkages in the lignin polymer is markedly different, with higher resinol (β-β) and spirodienone (β-1) contents, but with virtually no phenylcoumarans (β-5, which can only be formed from guaiacyl units). p-Hydroxybenzoates, acylating the γ-positions of lignin side chains, were reduced by >50%, suggesting consequent impacts on related pathways. A model depicting the putative structure of the transgenic lignin resulting from the overexpression of F5H is presented. The altered structural features in the transgenic lignin polymer, as revealed here, support the contention that there are significant opportunities to improve biomass utilization by exploiting the malleability of plant lignification processes.
Applied Biochemistry and Biotechnology | 2002
Yanpin Lu; Bin Yang; David J. Gregg; John N. Saddler; Shawn D. Mansfield
The sugar yield and enzyme adsorption profile obtained during the hydrolysis of SO2-catalyzed steam-exploded Douglas-fir and posttreated steam-exploded Douglas-fir substrates were determined. After hot alkali peroxide posttreatment, the rates and yield of hydrolysis attained from the posttreated Douglas-fir were significantly higher, even at lower enzyme loadings, than those obtained with the corresponding steam-exploded Douglas-fir. The enzymatic adsorption profiles observed during hydrolysis of the two substrates were significantly different. Ultrafiltration was employed to recover enzyme in solution (supernatant) and reused in subsequent hydrolysis reactions with added, fresh substrate. These recycle findings suggested that the enzyme remained relatively active for three rounds of recycle. It is likely that enzyme recovery and reuse during the hydrolysis of posttreated softwood substrates could lead to reductions in the need for the addition of fresh enzyme during softwood-based bioconversion processes.
Applied and Environmental Microbiology | 2010
Amber Vanden Wymelenberg; Jill Gaskell; Michael D. Mozuch; Grzegorz Sabat; John Ralph; Oleksandr Skyba; Shawn D. Mansfield; Robert A. Blanchette; Diego Martinez; Igor V. Grigoriev; Philip J. Kersten; Dan Cullen
ABSTRACT Cellulose degradation by brown rot fungi, such as Postia placenta, is poorly understood relative to the phylogenetically related white rot basidiomycete, Phanerochaete chrysosporium. To elucidate the number, structure, and regulation of genes involved in lignocellulosic cell wall attack, secretome and transcriptome analyses were performed on both wood decay fungi cultured for 5 days in media containing ball-milled aspen or glucose as the sole carbon source. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a total of 67 and 79 proteins were identified in the extracellular fluids of P. placenta and P. chrysosporium cultures, respectively. Viewed together with transcript profiles, P. chrysosporium employs an array of extracellular glycosyl hydrolases to simultaneously attack cellulose and hemicelluloses. In contrast, under these same conditions, P. placenta secretes an array of hemicellulases but few potential cellulases. The two species display distinct expression patterns for oxidoreductase-encoding genes. In P. placenta, these patterns are consistent with an extracellular Fenton system and include the upregulation of genes involved in iron acquisition, in the synthesis of low-molecular-weight quinones, and possibly in redox cycling reactions.
Science | 2014
Curtis G. Wilkerson; Shawn D. Mansfield; Fachuang Lu; Saunia Withers; Ji-Young Park; Steven D. Karlen; Eliana Gonzales-Vigil; Dharshana Padmakshan; Faride Unda; Jorge Rencoret; John Ralph
Constructed for Deconstruction Lignin provides strength to wood but also impedes efficient degradation when wood is used as biofuel. Wilkerson et al. (p. 90) engineered poplar to produce lignin that is more amenable to degradation. From a handful of plants that contain more digestible lignin monomers, Angelica sinensis was selected and its monolignol transferase activities analyzed. The enzyme involved, coniferyl ferulate feruloyl-CoA monolignol transferase, was then expressed in poplar. The resulting poplar trees showed no difference in growth habit under greenhouse conditions, but their lignin showed improved digestibility. Engineered poplar lignin with readily cleavable ester bonds in the polymer backbone improves wood degradability. Redesigning lignin, the aromatic polymer fortifying plant cell walls, to be more amenable to chemical depolymerization can lower the energy required for industrial processing. We have engineered poplar trees to introduce ester linkages into the lignin polymer backbone by augmenting the monomer pool with monolignol ferulate conjugates. Herein, we describe the isolation of a transferase gene capable of forming these conjugates and its xylem-specific introduction into poplar. Enzyme kinetics, in planta expression, lignin structural analysis, and improved cell wall digestibility after mild alkaline pretreatment demonstrate that these trees produce the monolignol ferulate conjugates, export them to the wall, and use them during lignification. Tailoring plants to use such conjugates during cell wall biosynthesis is a promising way to produce plants that are designed for deconstruction.
Plant Journal | 2010
Colleen P. MacMillan; Shawn D. Mansfield; Zbigniew Stachurski; Robert Evans; Simon G. Southerton
The ancient cell adhesion fasciclin (FAS) domain is found in bacteria, fungi, algae, insects and animals, and occurs in a large family of fasciclin-like arabinogalactan proteins (FLAs) in higher plants. Functional roles for FAS-containing proteins have been determined for insects, algae and vertebrates; however, the biological functions of the various higher-plant FLAs are not clear. Expression of some FLAs has been correlated with the onset of secondary-wall cellulose synthesis in Arabidopsis stems, and also with wood formation in the stems and branches of trees, suggesting a biological role in plant stems. We examined whether FLAs contribute to plant stem biomechanics. Using phylogenetic, transcript abundance and promoter-GUS fusion analyses, we identified a conserved subset of single FAS domain FLAs (group A FLAs) in Eucalyptus and Arabidopsis that have specific and high transcript abundance in stems, particularly in stem cells undergoing secondary-wall deposition, and that the phylogenetic conservation appears to extend to other dicots and monocots. Gene-function analyses revealed that Arabidopsis T-DNA knockout double mutant stems had altered stem biomechanics with reduced tensile strength and a reduced tensile modulus of elasticity, as well as altered cell-wall architecture and composition, with increased cellulose microfibril angle and reduced arabinose, galactose and cellulose content. Using materials engineering concepts, we relate the effects of these FLAs on cell-wall composition with stem biomechanics. Our results suggest that a subset of single FAS domain FLAs contributes to plant stem strength by affecting cellulose deposition, and to the stem modulus of elasticity by affecting the integrity of the cell-wall matrix.