Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shawn J. Leroux is active.

Publication


Featured researches published by Shawn J. Leroux.


Ecology Letters | 2008

Subsidy hypothesis and strength of trophic cascades across ecosystems

Shawn J. Leroux; Michel Loreau

Ecosystems are differentially open to subsidies of energy, material and organisms. This fundamental ecosystem attribute has long been recognized but the influence of this property on community regulation has not been investigated. We propose that this environmental attribute may explain variation in the strength of trophic cascades among ecosystems. Simply because of gravity, we should predict that systems with convex profiles receive low amounts of subsidies whereas systems with concave profiles act as spatial attractors, and receive high amounts of subsidies. The subsidy hypothesis states that ecosystems with high amounts of allochthonous inputs will experience the strongest trophic cascades. To test this hypothesis, we derive ecosystem models and investigate the effect of location and magnitude of subsidies on the strength of trophic cascades. Predictions from our models support the subsidy hypothesis and highlight the need to consider ecosystems as open to allochthonous flows.


Ecological Applications | 2013

Mechanistic models for the spatial spread of species under climate change

Shawn J. Leroux; Maxim Larrivée; Véronique Boucher-Lalonde; Amy Hurford; Juan Zuloaga; Jeremy T. Kerr; Frithjof Lutscher

Global climate change is a major threat to biodiversity. The most common methods for predicting the response of biodiversity to changing climate do not explicitly incorporate fundamental evolutionary and ecological processes that determine species responses to changing climate, such as reproduction, dispersal, and adaptation. We provide an overview of an emerging mechanistic spatial theory of species range shifts under climate change. This theoretical framework explicitly defines the ecological processes that contribute to species range shifts via biologically meaningful dispersal, reproductive, and climate envelope parameters. We present methods for estimating the parameters of the model with widely available species occurrence and abundance data and then apply these methods to empirical data for 12 North American butterfly species to illustrate the potential use of the theory for global change biology. The model predicts species persistence in light of current climate change and habitat loss. On average, we estimate that the climate envelopes of our study species are shifting north at a rate of 3.25 +/- 1.36 km/yr (mean +/- SD) and that our study species produce 3.46 +/- 1.39 (mean +/- SD) viable offspring per individual per year. Based on our parameter estimates, we are able to predict the relative risk of our 12 study species for lagging behind changing climate. This theoretical framework improves predictions of global change outcomes by facilitating the development and testing of hypotheses, providing mechanistic predictions of current and future range dynamics, and encouraging the adaptive integration of theory and data. The theory is ripe for future developments such as the incorporation of biotic interactions and evolution of adaptations to novel climatic conditions, and it has the potential to be a catalyst for the development of more effective conservation strategies to mitigate losses of biodiversity from global climate change.


Biological Reviews | 2013

Unifying sources and sinks in ecology and Earth sciences

Michel Loreau; Tanguy Daufresne; Andrew Gonzalez; Dominique Gravel; Frédéric Guichard; Shawn J. Leroux; Nicolas Loeuille; François Massol; Nicolas Mouquet

The paired source and sink concepts are used increasingly in ecology and Earth sciences, but they have evolved in divergent directions, hampering communication across disciplines. We propose a conceptual framework that unifies existing definitions, and review their most significant consequences for the various disciplines. A general definition of the source and sink concepts that transcends disciplines is based on net flows between the components of a system: a source is a subsystem that is a net exporter of some living or non‐living entities of interest, and a sink is a net importer of these entities. Sources and sinks can further be classified as conditional and unconditional, depending on the intrinsic propensity of subsystems to either produce (source) or absorb (sink) a surplus of these entities under some (conditional) or all (unconditional) conditions. The distinction between conditional and unconditional sources and sinks, however, is strongly context dependent. Sources can turn into sinks, and vice versa, when the context is changed, when systems are subject to temporal fluctuations or evolution, or when they are considered at different spatial and temporal scales. The conservation of ecosystem services requires careful consideration of the source−sink dynamics of multiple ecosystem components. Our synthesis shows that source−sink dynamics has profound consequences for our ability to understand, predict, and manage species and ecosystems in heterogeneous landscapes.


Ecosystems | 2012

Dynamics of Reciprocal Pulsed Subsidies in Local and Meta-Ecosystems

Shawn J. Leroux; Michel Loreau

Temporally variable and reciprocal subsidies between ecosystems are ubiquitous. These spatial flows can generate a suite of direct and indirect effects in local and meta-ecosystems. The focus of most subsidy research, however, has been on the response of consumers in recipient ecosystems to constant subsidies over very short or very long time scales. We derive a meta-ecosystem model to explicitly consider the dynamic feedbacks between local ecosystems coupled through reciprocal pulsed subsidies. We predict oscillating reinforcing and dampening effects of reciprocal pulsed herbivore flows. Maximum reinforcing effects between reciprocal pulsed herbivore flows occur when these flows are in phase with the dynamics of neighboring predators. This prediction is robust to a range of pulse quantities and frequencies. Reciprocal pulsed herbivore subsidies lead to spatial and temporal variability in the strength of trophic cascades in local and meta-ecosystems but these cascading effects are the strongest when reciprocal pulsed subsidies are temporally concentrated. When predators demonstrate a behavioral response to prey abundance, reciprocal pulsed subsidies dampen the strength of local trophic cascades but lead to strong trophic cascades across local ecosystems. The timing of reciprocal pulsed subsidies is a critical component that determines the cascading effects of spatial flows. We show that spatial and temporal variabilities in resources and consumers can have a significant influence on the strength of cascading trophic interactions; therefore, our ability to detect and understand trophic cascades may depend on the scale of inquiry of ecological studies.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Predation risk, stoichiometric plasticity and ecosystem elemental cycling

Shawn J. Leroux; Dror Hawlena; Oswald J. Schmitz

It is widely held that herbivore growth and production is limited by dietary nitrogen (N) that in turn constrains ecosystem elemental cycling. Yet, emerging evidence suggests that this conception of limitation may be incomplete, because chronic predation risk heightens herbivore metabolic rate and shifts demand from N-rich proteins to soluble carbohydrate–carbon (C). Because soluble C can be limiting, predation risk may cause ecosystem elemental cycling rates and stoichiometric balance to depend on herbivore physiological plasticity. We report on a stoichiometrically explicit ecosystem model that investigates this problem. The model tracks N, and soluble and recalcitrant C through ecosystem compartments. We evaluate how soluble plant C influences C and N stocks and flows in the presence and absence of predation risk. Without risk, herbivores are limited by N and respire excess C so that plant-soluble C has small effects only on elemental stocks and flows. With predation risk, herbivores are limited by soluble C and release excess N, so plant-soluble C critically influences ecosystem elemental stocks flows. Our results emphasize that expressing ecosystem stoichiometric balance using customary C : N ratios that do not distinguish between soluble and recalcitrant C may not adequately describe limitations on elemental cycling.


Ecology | 2010

Consumer-mediated recycling and cascading trophic interactions

Shawn J. Leroux; Michel Loreau

Cascading trophic interactions mediated by consumers are complex phenomena, which encompass many direct and indirect effects. Nonetheless, most experiments and theory on the topic focus uniquely on the indirect, positive effects of predators on producers via regulation of herbivores. Empirical research in aquatic ecosystems, however, demonstrate that the indirect, positive effects of consumer-mediated recycling on primary producer stocks may be larger than the effects of herbivore regulation, particularly when predators have access to alternative prey. We derive an ecosystem model with both recipient- and donor-controlled trophic relationships to test the conditions of four hypotheses generated from recent empirical work on the role of consumer-mediated recycling in cascading trophic interactions. Our model predicts that predator regulation of herbivores will have larger, positive effects on producers than consumer-mediated recycling in most cases but that consumer-mediated recycling does generally have a positive effect on producer stocks. We demonstrate that herbivore recycling will have larger effects on producer biomass than predator recycling when turnover rates and recycling efficiencies are high and predators prefer local prey. In addition, predictions suggest that consumer-mediated recycling has the largest effects on primary producers when predators prefer allochthonous prey and predator attack rates are high. Finally, our model predicts that consumer-mediated recycling effects may not be largest when external nutrient loading is low. Our model predictions highlight predator and prey feeding relationships, turnover rates, and external nutrient loading rates as key determinants of the strength of cascading trophic interactions. We show that existing hypotheses from specific empirical systems do not occur under all conditions, which further exacerbates the need to consider a broad suite of mechanisms when investigating trophic cascades.


PLOS ONE | 2014

Impact of non-native terrestrial mammals on the structure of the terrestrial mammal food web of Newfoundland, Canada.

Justin S. Strong; Shawn J. Leroux

The island of Newfoundland is unique because it has as many non-native terrestrial mammals as native ones. The impacts of non-native species on native flora and fauna can be profound and invasive species have been identified as one of the primary drivers of species extinction. Few studies, however, have investigated the effects of a non-native species assemblage on community and ecosystem properties. We reviewed the literature to build the first terrestrial mammal food web for the island of Newfoundland and then used network analyses to investigate how the timing of introductions and trophic position of non-native species has affected the structure of the terrestrial mammal food web in Newfoundland. The first non-native mammals (house mouse and brown rat) became established in Newfoundland with human settlement in the late 15th and early 16th centuries. Coyotes and southern red-backed voles are the most recent mammals to establish themselves on the island in 1985 and 1998, respectively. The fraction of intermediate species increased with the addition of non-native mammals over time whereas the fraction of basal and top species declined over time. This increase in intermediate species mediated by non-native species arrivals led to an overall increase in the terrestrial mammal food web connectance and generality (i.e. mean number of prey per predator). This diverse prey base and sources of carrion may have facilitated the natural establishment of coyotes on the island. Also, there is some evidence that the introduction of non-native prey species such as the southern red-backed vole has contributed to the recovery of the threatened American marten. Long-term monitoring of the food web is required to understand and predict the impacts of the diverse novel interactions that are developing in the terrestrial mammal food web of Newfoundland.


Ecography | 2017

Evaluating conceptual models of landscape change

Lars A. Brudvig; Shawn J. Leroux; Cécile H. Albert; Emilio M. Bruna; Kendi F. Davies; Robert M. Ewers; Douglas J. Levey; Renata Pardini; Julian Resasco

&NA; A variety of landscape models are used to conceptualize and interpret human impacts on ecosystems and their biodiversity. The simplest, a ‘patch‐matrix’ model, is rooted in island biogeography theory and assumes a dichotomy between generic, easily‐defined habitat patches and a surrounding matrix that is completely inhospitable. This dichotomy between patch and matrix habitats has been recently relaxed, with the ‘continuum’ model taking this relaxation to its extreme and logical endpoint – a species‐based model with no a priori definition of habitat or matrix, but rather focusing on ecological gradients. Yet, because few empirical comparisons of these bookending models exist, we lack understanding of their relative utility or the merits of hybrid approaches that combine attributes of patch‐matrix and continuum models. To guide such considerations, we first develop a decision‐making framework for the application of patch‐matrix, continuum, and hybrid models. The framework takes into account study objectives, attributes of the landscape, and species traits. We then evaluate this framework by empirically comparing how continuum, patch‐matrix, and hybrid models explain beetle distributions across two contrasting fragmented landscapes, for species differing in trophic level and habitat specificity. Within the Hope River Forest Fragmentation Project, a system with strong landscape contrast and distinct (‘hard’) structural edges between forest fragments and grassland, we find broad support for hybrid models, particularly those incorporating surrounding landscape structure. Conversely, within the Wog Wog Habitat Fragmentation Experiment, a system with weak landscape contrast and ‘soft’ structural edges between natural and plantation forest, we find co‐support for continuum and hybrid models. We find no support in either system for patch‐matrix, relative to continuum and hybrid models. We conclude by considering key questions and areas of research for advancing the application of models to understand species responses and biodiversity patterns associated with land‐use change.


Ecography | 2017

Structural uncertainty in models projecting the consequences of habitat loss and fragmentation on biodiversity

Shawn J. Leroux; Cécile H. Albert; Anne-Sophie Lafuite; Bronwyn Rayfield; Shaopeng Wang; Dominique Gravel

&NA; Ecological theory is essential to predict the effects of global changes such as habitat loss and fragmentation on biodiversity. Species–area relationships (SAR), metapopulation models (MEP) and species distribution models (SDM) are commonly used tools incorporating different ecological processes to explain biodiversity distribution and dynamics. Yet few studies have compared the outcomes of these disparate models and investigated their complementarity. Here we show that the processes underlying SAR (patch area), MEP (patch isolation) and SDM (environmental conditions) models can be compared with a common statistical framework. Our approach allows for species and community‐level predictions under current and future landscape scenarios, facilitates multi‐model comparison and provides the machinery for integrating multiple mechanisms into one model. We apply this framework to the distribution of eight focal vertebrate species in current and future projected landscapes where 10% of the landscape is lost to land‐use change in southwestern, Quebec, Canada. Based on a model selection approach, we found that a model including patch area was the top ranked model for four of our focal species and models including patch isolation and environmental conditions were the top ranked models for two focal species each. Community‐level predictions of models based on patch area, patch isolation and environmental conditions for both current and future landscapes showed high spatial overlap, however, patch area models always predicted a reduction of species richness per patch whereas both the patch isolation and environmental conditions models predicted an increase or decrease in species richness per patch following habitat loss and fragmentation. Our comparative tool will allow ecologists and conservation practitioners to relate structural uncertainty to key mechanisms underlying each model. Ultimately, this approach is one step in the direction of deriving robust predictions for the change and loss of biodiversity under global change, which is key for informing conservation plans.


Archive | 2015

Theoretical perspectives on bottom-up and top-down interactions across ecosystems

Shawn J. Leroux; Michel Loreau; Torrance C. Hanley; Kimberly J. La Pierre

Introduction The study of the determinants of biomass pyramids (i.e., the patterns of biomass of organisms at different trophic levels of an ecosystem) within and across ecosystems is an enduring endeavor in the ecological sciences (Gripenberg and Roslin, 2007; Gruner et al., 2008). This classic ecological problem still fascinates ecologists worldwide and the lively debate on this question is an attestation of the complexity of ecological systems. The ecological literature reveals two main perspectives for predicting biomass pyramids; one perspective emphasizes the role of resources such as inorganic nitrogen (N) and phosphorus (P) or primary producers in determining the biomass of higher trophic levels, and the other perspective emphasizes the role of consumers such as herbivores and predators in determining the biomass of lower trophic levels (Oksanen and Oksanen, 2000; Gruner et al., 2008). The resource-based hypothesis states that organisms are resource-limited, and therefore resources determine the shape of biomass pyramids (Elton, 1927; Lindeman, 1942; White, 1978; McQueen et al., 1986). Consistent with Elton’s (1927) perspective, Lindeman (1942) and others (e.g., White, 1978; McQueen et al., 1986) argued that inorganic nutrients and solar radiation limit plant growth and subsequently the potential transfer of energy and nutrients from lower trophic levels to higher trophic levels in ecosystems. This bottom-up perspective has been expanded to consider the role of plant defense in limiting herbivory (Strong, 1992; Polis and Strong, 1996; also, see Chapter 8 and Chapter 13). In contrast, the consumer-based hypothesis (i.e., Hairston Smith Slobodkin (HSS) Hypothesis) states that organisms are consumer-regulated, and therefore higher-level consumers determine biomass pyramids (Hairston et al., 1960).

Collaboration


Dive into the Shawn J. Leroux's collaboration.

Top Co-Authors

Avatar

Michel Loreau

Paul Sabatier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy L. Tanner

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim Lisgo

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge