Shawn J. Marshall
University of Calgary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shawn J. Marshall.
Bulletin of the American Meteorological Society | 2013
James W. Hurrell; Marika M. Holland; Peter R. Gent; Steven J. Ghan; Jennifer E. Kay; Paul J. Kushner; Jean-Francois Lamarque; William G. Large; David M. Lawrence; Keith Lindsay; William H. Lipscomb; Matthew C. Long; Natalie M. Mahowald; Daniel R. Marsh; Richard Neale; Philip J. Rasch; Steven J. Vavrus; Mariana Vertenstein; David C. Bader; William D. Collins; James J. Hack; Jeffrey T. Kiehl; Shawn J. Marshall
The Community Earth System Model (CESM) is a flexible and extensible community tool used to investigate a diverse set of Earth system interactions across multiple time and space scales. This global coupled model significantly extends its predecessor, the Community Climate System Model, by incorporating new Earth system simulation capabilities. These comprise the ability to simulate biogeochemical cycles, including those of carbon and nitrogen, a variety of atmospheric chemistry options, the Greenland Ice Sheet, and an atmosphere that extends to the lower thermosphere. These and other new model capabilities are enabling investigations into a wide range of pressing scientific questions, providing new foresight into possible future climates and increasing our collective knowledge about the behavior and interactions of the Earth system. Simulations with numerous configurations of the CESM have been provided to phase 5 of the Coupled Model Intercomparison Project (CMIP5) and are being analyzed by the broad com...
Science | 2006
Bette L. Otto-Bliesner; Shawn J. Marshall; Jonathan T. Overpeck; Gifford H. Miller; Aixue Hu
In the future, Arctic warming and the melting of polar glaciers will be considerable, but the magnitude of both is uncertain. We used a global climate model, a dynamic ice sheet model, and paleoclimatic data to evaluate Northern Hemisphere high-latitude warming and its impact on Arctic icefields during the Last Interglaciation. Our simulated climate matches paleoclimatic observations of past warming, and the combination of physically based climate and ice-sheet modeling with ice-core constraints indicate that the Greenland Ice Sheet and other circum-Arctic ice fields likely contributed 2.2 to 3.4 meters of sea-level rise during the Last Interglaciation.
Journal of Glaciology | 2000
Antony J. Payne; Philippe Huybrechts; Ayako Abe-Ouchi; Reinhard Calov; Jim Fastook; Ralf Greve; Shawn J. Marshall; I. Marsiat; Catherine Ritz; Lev Tarasov; M. P. A. Thomassen
This paper discusses results from the second phase of the European Ice sheet Modelling Initiative (EISMINT). It reports the intercompartison of ten operational ice-sheet models and uses a series of experiments to examine the implications of thermomechanical coupling for model behaviour. A schematic, circular ice sheet is used in the work which investigates both steady states and the response to stepped changes in climate. The major finding is that radial symmetry implied in the experimental design can, under certain circumstances, break down with the formation of distinct, regularly spaced spokes of cold ice which extended from the interior of the ice sheet outward to the surrounding zone of basal melt. These features also manifest themselves in the thickness and velocity distributions predicted by the models. They appear to be a common feature to all of the models which took part in the intercomparison, and may stem from interactions between ice temperature, flow and surface form. The exact nature of these features varies between models, and their existence appears to be controlled by the overall thermal regimne of the ice sheet. A second result is that there is considerable agreement between the models in their predictions of global-scale response to imposed climate change.
Quaternary Science Reviews | 2002
Shawn J. Marshall; Thomas S. James; Garry K. C. Clarke
Abstract The areal extent of the last glacial maximum (LGM) ice sheets is well known in North America, but there is no direct geological proxy for ice sheet thickness or volume. Uncertainties associated with glaciological and geophysical reconstructions give widely varying estimates of North American Ice Sheet (NAIS) volume at LGM. In an effort to quantify the uncertainty associated with glaciological reconstructions, we conducted a suite of 190 numerical simulations of the last glacial cycle in North America, prescribing different climatic, mass balance, glaciologic, and isostatic treatments for the least constrained model variables. LGM ice sheet reconstructions were evaluated using the well-established geologic record of ice sheet area and southern extent at LGM ( Dyke and Prest (1987) ). These constraints give a subset of 33 simulations that produce reasonable LGM ice cover in North America. Ice sheet dispositions and the associated parameter settings in this subset of tests provide insight into the plausible range of NAIS thickness, form, and mass balance regime at LGM. Ice volume in this subset of tests spans a range of 28.5–38.9×10 15 m 3 at LGM, with a predominant cluster at 32–36×10 15 m 3 . Taking floating ice and displaced continental water into account, this corresponds to 69–94 m eustatic sea level (msl). More than 75% of the accepted tests fall in the range 78–88 msl . We argue that this is a plausible estimate of the volume of water locked up in the NAIS at LGM.
Journal of Geophysical Research | 1996
Shawn J. Marshall; Garry K. C. Clarke; Art Dyke; David A. Fisher
Ice streams are fast flowing arteries which play a vital role in the dynamics and mass balance of present-day ice sheets. Although not fully understood, fast flow dynamics are intimately coupled with geologic, topographic, thermal, and hydrologic conditions of the underlying bed. These are difficult observables beneath contemporary ice sheets, hindering elucidation of the processes which govern ice streaxn behavior. For past ice sheets the problem is antithetic. Geologic evidence of former ice streams exists, but spatiM and temporal histories are uncertain; however, detailed knowledge of bed geology and topography is available in many places. We take advantage of this information to compile terrain characteristics relevant to fast flow dynamics in the Laurentide and Cordilleran Ice Sheets. Using seed points where fast flowing Wisconsinan ice has been geologically inferred, discriminant analysis of a suite of North American geologic and topographic properties yields a concise measure of ice-bed coupling strength. Our analysis suggests that the interior plains and continental shelf regions of North America have low basal coupling relative to areas of variable relief or exposed bedrock in the Cordillera and on the Canadian Shield. We conclude that the interior plains and continental shelves are both topographically and geologically predisposed to large-scale basal flows (i.e., ice streaxns or surge lobes). This result holds independent of whether the mechanism of fast flow is sediment deformation or decoupled sliding over the bed.
Journal of Climate | 2009
Alex S. Gardner; Martin Sharp; Roy M. Koerner; Claude Labine; Sarah Boon; Shawn J. Marshall; David O. Burgess; David Lewis
Distributed glacier surface melt models are often forced using air temperature fields that are either downscaled from climate models or reanalysis, or extrapolated from station measurements. Typically, the downscaling and/or extrapolation are performed using a constanttemperaturelapserate, which is often taken to be the free-air moist adiabatic lapse rate (MALR: 68‐78 Ck m 21 ). To explore the validity of this approach, the authors examined altitudinal gradients in daily mean air temperature along six transects across four glaciers in the Canadian high Arctic. The dataset includes over 58 000 daily averaged temperature measurements from 69 sensors covering the period 1988‐2007. Temperature lapse rates near glacier surfaces vary on bothdailyandseasonaltimescales,areconsistentlylowerthan theMALR(ablation seasonmean:4.98Ckm 21 ), and exhibit strong regional covariance. A significant fraction of the daily variability in lapse rates is associated with changes in free-atmospheric temperatures (higher temperatures 5 lower lapse rates). The temperature fields generated by downscaling point location summit elevation temperatures to the glacier surface using temporally variable lapse rates are a substantial improvement over those generated using the static MALR. Thesefindingssuggestthatlowernear-surfacetemperaturelapseratescanbeexpectedunderawarmingclimate and that the air temperature near the glacier surface is less sensitive to changes in the temperature of the free atmosphere than is generally assumed.
Journal of Geophysical Research | 1995
W. Richard Peltier; Shawn J. Marshall
We apply a coupled energy-balance/ice-sheet climate model in an investigation of northern hemisphere ice-sheet advance and retreat over the last glacial cycle. When driven only by orbital insolation variations, the model predicts ice-sheet advances over the continents of North America and Eurasia that are in good agreement with geological reconstructions in terms of the timescale of advance and the spatial positioning of the main ice masses. The orbital forcing alone, however, is unable to induce the observed rapid ice-sheet retreat, and we conclude that additional climatic feedbacks not explicitly included in the basic model must be acting. In the analyses presented here we have parameterized a number of potentially important effects in order to test their relative influence on the process of glacial termination. These include marine instability, thermohaline circulation effects, carbon dioxide variations, and snow albedo changes caused by dust loading during periods of high atmospheric aerosol concentration. For the purpose of these analyses the temporal changes in the latter two variables were inferred from ice core records. Of these various influences, our analyses suggest that the albedo variations in the ice-sheet ablation zone caused by dust loading may represent an extremely important ablation mechanism. Using our parameterization of “dirty” snow in the ablation zone we find glacial retreat to be strongly accelerated, such that complete collapse of the otherwise stable Laurentide ice sheet ensues. The last glacial maximum configurations of the Laurentide and Fennoscandian complexes are also brought into much closer accord with the ICE-3G reconstruction of Tushingham and Peltier (1991,1992) and the ICE-4G reconstruction of Peltier (1994) when this effect is reasonably introduced.
Canadian Water Resources Journal | 2011
Shawn J. Marshall; Eric C. White; Michael N. Demuth; Tobias Bolch; Roger Wheate; Brian Menounos; Matthew J. Beedle; Joseph M. Shea
Maps of glacier area in western Canada have recently been generated for 1985 and 2005 (Bolch et al., 2010), providing the first complete inventory of glacier cover in Alberta and British Columbia. Western Canada lost about 11% of its glacier area over this period, with area loss exceeding 20% on the eastern slopes of the Canadian Rockies. Glacier area is difficult to relate to glacier volume, which is the attribute of relevance to water resources and global sea level rise. We apply several possible volume-area scaling relations and glacier slope-thickness relations to estimate the volume of glacier ice in the headwater regions of rivers that spring from the eastern slopes of the Canadian Rocky Mountains, arriving at an estimate of 55 ± 15 km3. We cannot preclude higher values, because the available data indicate that large valley glaciers in the Rocky Mountains may be anomalously thick relative to what is typical in the global database that forms the basis for empirical volume-area scaling relations. Incorporating multivariate statistical analysis using observed mass balance data from Peyto Glacier, Alberta and synoptic meteorological conditions in the Canadian Rockies (1966–2007), we model future glacier mass balance scenarios on the eastern slopes of the Rockies. We simulate future volume changes for the glaciers of the Rockies by using these mass balance scenarios in conjunction with a regional ice dynamics model. These projections indicate that glaciers on the eastern slopes will lose 80–90% of their volume by 2100. Glacier contributions to streamflow in Alberta decline from 1.1 km3 a−1 in the early 2000s to 0.1 km3 a−1 by the end of this century.
Earth and Planetary Science Letters | 2000
Shawn J. Marshall; Kurt M. Cuffey
Abstract The superb quality of the climate chronology archived in the Summit, Greenland ice cores (GRIP, GISP2) testifies that the Greenland Ice Sheet divide has been generally stable through the last glacial cycle. The ice sheet has experienced a broad range of paleoclimate conditions, ice sheet margin configurations, and internal dynamical adjustments in glacial–interglacial transitions, however. It is unlikely that the Summit region escaped shifts in ice divide position, geometry, elevation, and flow characteristics. Details of this dynamical history are important to several aspects of ice core studies. The magnitudes of pure and simple shearing, reconstruction of vertical ice velocity, the explicit location of the ice divide, and the divide ‘residence time’ at different locations are all of interest in interpretation of climatic variables and physical properties of ice in the ice cores. We apply a three-dimensional, thermomechanical ice sheet model to examine the evolution of these dynamical variables over the last 160 kyr in central Greenland. While a high-elevation ice dome is present in the Summit region throughout the simulation, ice divide migrations of up to 150 km are predicted. All points in the vicinity of the Summit ice cores, including the modern divide, have been subject to flowline shifts and variable, non-zero shear deformation during the adjustment from glacial to Holocene conditions, from ca. 10 ka to the present. Modelled divide peregrinations and strain rate history are consistent with the observed disturbance of deep ice in the GRIP and GISP2 ice cores, which has muddled paleoclimate reconstructions for the last interglacial (Eemian) period in Greenland. Dynamical excursions are also evident north of the modern summit, where the NGRIP ice core is currently being drilled [Dahl-Jensen et al., J. Glaciol. 43 (1997) 300–306]. However, the prevailing flow direction and deformation regime at the NGRIP site are much more stable than those at GRIP and GISP2 in the simulations. Combined with the greater depth of ice at this site, this lends cautious optimism to the hope that Eemian ice at NGRIP may contain an intact record of Eemian climate.
Journal of Geophysical Research | 2005
Shawn J. Marshall; Helgi Björnsson; Gwenn E. Flowers; Garry K. C. Clarke
(1) We apply a coupled model of ice sheet dynamics and subglacial hydrology to investigate the dynamics and future evolution of the Vatnajokull ice cap, Iceland. In this paper we describe a new theoretical approach to introducing longitudinal stress coupling in the ice dynamics solution, and we analyze our ability to simulate the main features of Vatnajokull, with and without longitudinal stress effects. Equilibrium ice cap configurations exist for Vatnajokull but under a narrow range of climatic boundary conditions. Equilibrium reconstructions have an average ice thickness greater than what is observed at Vatnajokull, consistent with our inability to capture surge dynamics in Vatnajokulls outlet glaciers. Hydrological regulation of basal flow, longitudinal stress coupling, and a simple parameterization of the subglacial heat flux from Vatnajokulls geothermal cauldrons all help to reduce average ice thickness in the equilibrium reconstructions, but cases that reproduce the present-day ice volume have an ice cap area that is 5-10% less than the actual ice cap. Present-day reconstructions that adopt a realistic climate spin-up for the period 1600-1990 provide improved fits to the modern-day ice cap geometry. This indicates that climatic disequilibrium also plays a significant role in dictating Vatnajokulls morphology. Simulations for the period 1600-2300 illustrate that air temperature is the dominant control on Vatnajokulls volume and area. Longitudinal stress coupling and hydrological coupling both increase Vatnajokulls sensitivity to future warming.)