Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shay Ben-Aroya is active.

Publication


Featured researches published by Shay Ben-Aroya.


PLOS Genetics | 2011

The Complete Spectrum of Yeast Chromosome Instability Genes Identifies Candidate CIN Cancer Genes and Functional Roles for ASTRA Complex Components

Peter C. Stirling; Michelle S. Bloom; Tejomayee Solanki-Patil; Stephanie Smith; Payal Sipahimalani; Zhijian Li; Megan Kofoed; Shay Ben-Aroya; Kyungjae Myung; Philip Hieter

Chromosome instability (CIN) is observed in most solid tumors and is linked to somatic mutations in genome integrity maintenance genes. The spectrum of mutations that cause CIN is only partly known and it is not possible to predict a priori all pathways whose disruption might lead to CIN. To address this issue, we generated a catalogue of CIN genes and pathways by screening ∼2,000 reduction-of-function alleles for 90% of essential genes in Saccharomyces cerevisiae. Integrating this with published CIN phenotypes for other yeast genes generated a systematic CIN gene dataset comprised of 692 genes. Enriched gene ontology terms defined cellular CIN pathways that, together with sequence orthologs, created a list of human CIN candidate genes, which we cross-referenced to published somatic mutation databases revealing hundreds of mutated CIN candidate genes. Characterization of some poorly characterized CIN genes revealed short telomeres in mutants of the ASTRA/TTT components TTI1 and ASA1. High-throughput phenotypic profiling links ASA1 to TTT (Tel2-Tti1-Tti2) complex function and to TORC1 signaling via Tor1p stability, consistent with the role of TTT in PI3-kinase related kinase biogenesis. The comprehensive CIN gene list presented here in principle comprises all conserved eukaryotic genome integrity pathways. Deriving human CIN candidate genes from the list allows direct cross-referencing with tumor mutational data and thus candidate mutations potentially driving CIN in tumors. Overall, the CIN gene spectrum reveals new chromosome biology and will help us to understand CIN phenotypes in human disease.


The EMBO Journal | 2010

Elg1, an alternative subunit of the RFC clamp loader, preferentially interacts with SUMOylated PCNA

Oren Parnas; Adi Zipin-Roitman; Boris Pfander; Batia Liefshitz; Yuval Mazor; Shay Ben-Aroya; Stefan Jentsch; Martin Kupiec

Replication‐factor C (RFC) is a protein complex that loads the processivity clamp PCNA onto DNA. Elg1 is a conserved protein with homology to the largest subunit of RFC, but its function remained enigmatic. Here, we show that yeast Elg1 interacts physically and genetically with PCNA, in a manner that depends on PCNA modification, and exhibits preferential affinity for SUMOylated PCNA. This interaction is mediated by three small ubiquitin‐like modifier (SUMO)‐interacting motifs and a PCNA‐interacting protein box close to the N‐terminus of Elg1. These motifs are important for the ability of Elg1 to maintain genomic stability. SUMOylated PCNA is known to recruit the helicase Srs2, and in the absence of Elg1, Srs2 and SUMOylated PCNA accumulate on chromatin. Strains carrying mutations in both ELG1 and SRS2 exhibit a synthetic fitness defect that depends on PCNA modification. Our results underscore the importance of Elg1, Srs2 and SUMOylated PCNA in the maintenance of genomic stability.


PLOS Genetics | 2010

Proteasome Nuclear Activity Affects Chromosome Stability by Controlling the Turnover of Mms22, a Protein Important for DNA Repair

Shay Ben-Aroya; Neta Agmon; Karen Yuen; Teresa Kwok; Kirk J. McManus; Martin Kupiec; Philip Hieter

To expand the known spectrum of genes that maintain genome stability, we screened a recently released collection of temperature sensitive (Ts) yeast mutants for a chromosome instability (CIN) phenotype. Proteasome subunit genes represented a major functional group, and subsequent analysis demonstrated an evolutionarily conserved role in CIN. Analysis of individual proteasome core and lid subunit mutations showed that the CIN phenotype at semi-permissive temperature is associated with failure of subunit localization to the nucleus. The resultant proteasome dysfunction affects chromosome stability by impairing the kinetics of double strand break (DSB) repair. We show that the DNA repair protein Mms22 is required for DSB repair, and recruited to chromatin in a ubiquitin-dependent manner as a result of DNA damage. Moreover, subsequent proteasome-mediated degradation of Mms22 is necessary and sufficient for cell cycle progression through the G2/M arrest induced by DNA damage. Our results demonstrate for the first time that a double strand break repair protein is a proteasome target, and thus link nuclear proteasomal activity and DSB repair.


PLOS ONE | 2009

The Elg1 Clamp Loader Plays a Role in Sister Chromatid Cohesion

Oren Parnas; Adi Zipin-Roitman; Yuval Mazor; Batia Liefshitz; Shay Ben-Aroya; Martin Kupiec

Mutations in the ELG1 gene of yeast lead to genomic instability, manifested in high levels of genetic recombination, chromosome loss, and gross chromosomal rearrangements. Elg1 shows similarity to the large subunit of the Replication Factor C clamp loader, and forms a RFC-like (RLC) complex in conjunction with the 4 small RFC subunits. Two additional RLCs exist in yeast: in one of them the large subunit is Ctf18, and in the other, Rad24. Ctf18 has been characterized as the RLC that functions in sister chromatid cohesion. Here we present evidence that the Elg1 RLC (but not Rad24) also plays an important role in this process. A genetic screen identified the cohesin subunit Mcd1/Scc1 and its loader Scc2 as suppressors of the synthetic lethality between elg1 and ctf4. We describe genetic interactions between ELG1 and genes encoding cohesin subunits and their accessory proteins. We also show that defects in Elg1 lead to higher precocious sister chromatid separation, and that Ctf18 and Elg1 affect cohesion via a joint pathway. Finally, we localize both Ctf18 and Elg1 to chromatin and show that Elg1 plays a role in the recruitment of Ctf18. Our results suggest that Elg1, Ctf4, and Ctf18 may coordinate the relative movement of the replication fork with respect to the cohesin ring.


PLOS Biology | 2010

Subtle Alterations in PCNA-Partner Interactions Severely Impair DNA Replication and Repair

Yearit Fridman; Niv Palgi; Daniel Dovrat; Shay Ben-Aroya; Philip Hieter; Amir Aharoni

Dynamic switching of PCNA-partner interactions is essential for normal DNA replication and repair in yeast.


PLOS Genetics | 2015

The Protein Quality Control Machinery Regulates Its Misassembled Proteasome Subunits

Lee Zeev Peters; Ofri Karmon; Galit David-Kadoch; Rotem Hazan; Tzenlin Yu; Michael H. Glickman; Shay Ben-Aroya

Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with various aggregation diseases. In eukaryotes, the ubiquitin proteasome system (UPS) plays a vital role in protein quality control (PQC), by selectively targeting misfolded proteins for degradation. While the assembly of the proteasome can be naturally impaired by many factors, the regulatory pathways that mediate the sorting and elimination of misassembled proteasomal subunits are poorly understood. Here, we reveal how the dysfunctional proteasome is controlled by the PQC machinery. We found that among the multilayered quality control mechanisms, UPS mediated degradation of its own misassembled subunits is the favored pathway. We also demonstrated that the Hsp42 chaperone mediates an alternative pathway, the accumulation of these subunits in cytoprotective compartments. Thus, we show that proteasome homeostasis is controlled through probing the level of proteasome assembly, and the interplay between UPS mediated degradation or their sorting into distinct cellular compartments.


PLOS Genetics | 2013

Reverse PCA, a systematic approach for identifying genes important for the physical interaction between protein pairs.

Ifat Lev; Marina Volpe; Liron Goor; Nelly Levinton; Liach Emuna; Shay Ben-Aroya

Protein-protein interactions (PPIs) are of central importance for many areas of biological research. Several complementary high-throughput technologies have been developed to study PPIs. The wealth of information that emerged from these technologies led to the first maps of the protein interactomes of several model organisms. Many changes can occur in protein complexes as a result of genetic and biochemical perturbations. In the absence of a suitable assay, such changes are difficult to identify, and thus have been poorly characterized. In this study, we present a novel genetic approach (termed “reverse PCA”) that allows the identification of genes whose products are required for the physical interaction between two given proteins. Our assay starts with a yeast strain in which the interaction between two proteins of interest can be detected by resistance to the drug, methotrexate, in the context of the protein-fragment complementation assay (PCA). Using synthetic genetic array (SGA) technology, we can systematically screen mutant libraries of the yeast Saccharomyces cerevisiae to identify those mutations that disrupt the physical interaction of interest. We were able to successfully validate this novel approach by identifying mutants that dissociate the conserved interaction between Cia2 and Mms19, two proteins involved in Iron-Sulfur protein biogenesis and genome stability. This method will facilitate the study of protein structure-function relationships, and may help in elucidating the mechanisms that regulate PPIs.


Genetics | 2013

Biogenesis of RNA Polymerases II and III Requires the Conserved GPN Small GTPases in Saccharomyces cerevisiae

Sean W. Minaker; Megan C. Filiatrault; Shay Ben-Aroya; Philip Hieter; Peter C. Stirling

The GPN proteins are a poorly characterized and deeply evolutionarily conserved family of three paralogous small GTPases, Gpn1, 2, and 3. The founding member, GPN1/NPA3/XAB1, is proposed to function in nuclear import of RNA polymerase II along with a recently described protein called Iwr1. Here we show that the previously uncharacterized protein Gpn2 binds both Gpn3 and Npa3/Gpn1 and that temperature-sensitive alleles of Saccharomyces cerevisiae GPN2 and GPN3 exhibit genetic interactions with RNA polymerase II mutants, hypersensitivity to transcription inhibition, and defects in RNA polymerase II nuclear localization. Importantly, we identify previously unrecognized RNA polymerase III localization defects in GPN2, GPN3, and IWR1 mutant backgrounds but find no localization defects of unrelated nuclear proteins or of RNA polymerase I. Previously, it was unclear whether the GPN proteins and Iwr1 had overlapping function in RNA polymerase II assembly or import. In this study, we show that the nuclear import defect of iwr1Δ, but not the GPN2 or GPN3 mutant defects, is partially suppressed by fusion of a nuclear localization signal to the RNA polymerase II subunit Rpb3. These data, combined with strong genetic interactions between GPN2 and IWR1, suggest that the GPN proteins function upstream of Iwr1 in RNA polymerase II and III biogenesis. We propose that the three GPN proteins execute a common, and likely essential, function in RNA polymerase assembly and transport.


Journal of Cell Science | 2016

Proteasome storage granules are transiently associated with the insoluble protein deposit in Saccharomyces cerevisiae

Lee Zeev Peters; Ofri Karmon; Shir Miodownik; Shay Ben-Aroya

ABSTRACT Proteasome storage granules (PSGs) are created in yeast as part of an extensive and programmed reorganization of proteins into reversible assemblies upon carbon source depletion. Here, we demonstrate that cells distinguish dysfunctional proteasomes from PSGs on the cytosolic insoluble protein deposit (IPOD). Furthermore, we provide evidence that this is a general mechanism for the reorganization of additional proteins into reversible assemblies. Our study expands the roles of the IPOD, which might serve not only as the specific depository for amyloidogenic and misfolded proteins, but also as a potential hub from which proteins are directed to distinct cellular compartments. These findings therefore provide a framework for understanding how cells discriminate between intact and abnormal proteins under stress conditions to ensure that only structurally ‘correct’ proteins are deployed. Summary: Carbon source depletion in Saccharomyces cerevisiae leads to the triage of proteasome storage granules (PSGs) and dysfunctional proteasomes on the IPOD, to ensure that only structurally ‘correct’ proteasomes are deployed.


Mbio | 2015

Novel Type III Effectors in Pseudomonas aeruginosa

David Burstein; Shirley Satanower; Michal Simovitch; Yana Belnik; Meital Zehavi; Gal Yerushalmi; Shay Ben-Aroya; Tal Pupko; Ehud Banin

ABSTRACT Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that causes chronic and acute infections in immunocompromised patients. Most P. aeruginosa strains encode an active type III secretion system (T3SS), utilized by the bacteria to deliver effector proteins from the bacterial cell directly into the cytoplasm of the host cell. Four T3SS effectors have been discovered and extensively studied in P. aeruginosa: ExoT, ExoS, ExoU, and ExoY. This is especially intriguing in light of P. aeruginosas ability to infect a wide range of hosts. We therefore hypothesized that additional T3SS effectors that have not yet been discovered are encoded in the genome of P. aeruginosa. Here, we applied a machine learning classification algorithm to identify novel P. aeruginosa effectors. In this approach, various types of data are integrated to differentiate effectors from the rest of the open reading frames of the bacterial genome. Due to the lack of a sufficient learning set of positive effectors, our machine learning algorithm integrated genomic information from another Pseudomonas species and utilized dozens of features accounting for various aspects of the effector coding genes and their products. Twelve top-ranking predictions were experimentally tested for T3SS-specific translocation, leading to the discovery of two novel T3SS effectors. We demonstrate that these effectors are not part of the injection structural complex and report initial efforts toward their characterization. IMPORTANCE Pseudomonas aeruginosa uses a type III secretion system (T3SS) to secrete toxic proteins, termed effectors, directly into the cytoplasm of the host cell. The activation of this secretion system is correlated with disease severity and patient death. Compared with many other T3SS-utilizing pathogenic bacteria, P. aeruginosa has a fairly limited arsenal of effectors that have been identified. This is in sharp contrast with the wide range of hosts that this bacterium can infect. The discovery of two novel effectors described here is an important step toward better understanding of the virulence and host evasion mechanisms adopted by this versatile pathogen and may provide novel approaches to treat P. aeruginosa infections. Pseudomonas aeruginosa uses a type III secretion system (T3SS) to secrete toxic proteins, termed effectors, directly into the cytoplasm of the host cell. The activation of this secretion system is correlated with disease severity and patient death. Compared with many other T3SS-utilizing pathogenic bacteria, P. aeruginosa has a fairly limited arsenal of effectors that have been identified. This is in sharp contrast with the wide range of hosts that this bacterium can infect. The discovery of two novel effectors described here is an important step toward better understanding of the virulence and host evasion mechanisms adopted by this versatile pathogen and may provide novel approaches to treat P. aeruginosa infections.

Collaboration


Dive into the Shay Ben-Aroya's collaboration.

Top Co-Authors

Avatar

Philip Hieter

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter C. Stirling

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge