Shazi Shakil
Aligarh Muslim University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shazi Shakil.
Molecules | 2009
Rosina Khan; Barira Islam; Mohd. Akram; Shazi Shakil; Anis Ahmad; S. Manazir Ali; Mashiatullah Siddiqui; Asad U. Khan
Antimicrobial activities of the crude ethanolic extracts of five plants were screened against multidrug resistant (MDR) strains of Escherichia coli, Klebsiella pneumoniae and Candida albicans. ATCC strains of Streptococcus mutans, Staphylococcus aureus, Enterococcus faecalis, Streptococcus bovis, Pseudimonas aeruginosa, Salmonella typhimurium, Escherichia coli, Klebsiella pneumoniae and Candida albicans were also tested. The strains that showed resistance against the maximum number of antibiotics tested were selected for an antibacterial assay. The MDR strains were sensitive to the antimicrobial activity of Acacia nilotica, Syzygium aromaticum and Cinnamum zeylanicum, whereas they exhibited strong resistance to the extracts of Terminalia arjuna and Eucalyptus globulus. Community-acquired infections showed higher sensitivity than the nosocomial infections against these extracts. The most potent antimicrobial plant was A. nilotica (MIC range 9.75-313µg/ml), whereas other crude plant extracts studied in this report were found to exhibit higher MIC values than A. nilotica against community acquired as well as nosocomial infection. This study concludes that A. nilotica, C. zeylanicum and S. aromaticum can be used against multidrug resistant microbes causing nosocomial and community acquired infections.
International Journal of Nanomedicine | 2012
Nasimudeen R. Jabir; Shams Tabrez; Ghulam Md Ashraf; Shazi Shakil; Ghazi A. Damanhouri; Mohammad A. Kamal
Cancer is a highly complex disease to understand, because it entails multiple cellular physiological systems. The most common cancer treatments are restricted to chemotherapy, radiation and surgery. Moreover, the early recognition and treatment of cancer remains a technological bottleneck. There is an urgent need to develop new and innovative technologies that could help to delineate tumor margins, identify residual tumor cells and micrometastases, and determine whether a tumor has been completely removed or not. Nanotechnology has witnessed significant progress in the past few decades, and its effect is widespread nowadays in every field. Nanoparticles can be modified in numerous ways to prolong circulation, enhance drug localization, increase drug efficacy, and potentially decrease chances of multidrug resistance by the use of nanotechnology. Recently, research in the field of cancer nanotechnology has made remarkable advances. The present review summarizes the application of various nanotechnology-based approaches towards the diagnostics and therapeutics of cancer.
Cns & Neurological Disorders-drug Targets | 2012
Shams Tabrez; Nasimudeen R. Jabir; Shazi Shakil; Qamre Alam; Adel M. Abuzenadah; Ghazi A. Damanhouri; Mohammad A. Kamal
Parkinsons disease (PD) is a common chronic progressive neurodegenerative disorder in elderly people. A consistent neurochemical abnormality in PD is degeneration of dopaminergic neurons in substantia nigra pars compacta, leading to a reduction of striatal dopamine (DA) levels. As tyrosine hydroxylase (TH) catalyses the formation of L-dihydroxyphenylalanine (L-DOPA), the rate-limiting step in the biosynthesis of DA, the disease can be considered as a TH-deficiency syndrome of the striatum. Problems related to PD usually build up when vesicular storage of DA is altered by the presence of either α-synuclein protofibrils or oxidative stress. Phosphorylation of three physiologically-regulated specific sites of N-terminal domain of TH is vital in regulating its kinetic and protein interaction. The concept of physiological significance of TH isoforms is another interesting aspect to be explored further for a comprehensive understanding of its role in PD. Thus, a logical and efficient strategy for PD treatment is based on correcting or bypassing the enzyme deficiency by the treatment with L-DOPA, DA agonists, inhibitors of DA metabolism or brain grafts with cells expressing a high level of TH. Neurotrophic factors are also attracting the attention of neuroscientists because they provide the essential neuroprotective and neurorestorative properties to the nigrostriatal DA system. PPAR-γ, a key regulator of immune responses, is likewise a promising target for the treatment of PD, which can be achieved by the use of agonists with the potential to impact the expression of pro- and anti-inflammatory cytokines at the transcriptional level in immune cells via expression of TH. Herein, we review the primary biochemical and pathological features of PD, and describe both classical and developing approaches aimed to ameliorate disease symptoms and its progression.
Journal of Chemotherapy | 2011
Shazi Shakil; E.I. Azhar; S. Tabrez; M.A. Kamal; N.R. Jabir; A.M. Abuzenadah; G.A. Damanhouri; Q. Alam
Abstract New Delhi metallo-β-lactamase (NDM-1) is a novel broad spectrum carbapenemase with ability to inactivate all β-lactams except aztreonam. However, most of the NDM-1-producers also produce aztreonam hydrolysing-β-lactamases thereby making these pathogens absolutely resistant to all β-lactams. The bla NDM−1 gene encodes a 27.5 kDa protein of 269 amino acids. It shares very little identity with other metallo-b-lactamases. Maximum identity has been observed to VIM-1/VIM-2 (32.4%). This mini-review is an update of the scientific literature for the said enzyme. Following the recommendation of David livermore, we further proposeto combine “aztreonam” and “inhibitor of the most frequently encountered aztreonam hydrolysing-β-lactamases in a given setting” as a possible strategy against NDM-1-producers. The inhibitor should be ‘versatile’ as well, i.e. it should have the ability to inhibit most of the variants of aztreonam hydrolysing-β-lactamases prevalent in the concerned setting. We strongly recommend surveillance studies using aztreonam/NXL-104-combination against NDM-1-producing pathogens in different geographical regions across the globe.
Journal of Applied Microbiology | 2010
Rosina Khan; Mohammad Zakir; Zakia Khanam; Shazi Shakil; Asad U. Khan
Aim: The objective of this study was to isolate and characterize the active compound from Trachyspermum ammi seeds, exhibiting antibiofilm activity against Streptococcus mutans, a major causal organism of dental caries.
Cns & Neurological Disorders-drug Targets | 2014
Ghulam Md Ashraf; Taqi Ahmed Khan; Iftekhar Hassan; Shams Tabrez; Shazi Shakil; Ishfaq A. Sheikh; Syed Kashif Zaidi; Mohammad Akram; Nasimudeen R. Jabir; Chelaprom K. Firoz; Aabgeena Naeem; Ibrahim M. Alhazza; Ghazi A. Damanhouri; Mohammad A. Kamal
In general, proteins can only execute their various biological functions when they are appropriately folded. Their amino acid sequence encodes the relevant information required for correct three-dimensional folding, with or without the assistance of chaperones. The challenge associated with understanding protein folding is currently one of the most important aspects of the biological sciences. Misfolded protein intermediates form large polymers of unwanted aggregates and are involved in the pathogenesis of many human diseases, including Alzheimers disease (AD) and Type 2 diabetes mellitus (T2DM). AD is one of the most prevalent neurological disorders and has worldwide impact; whereas T2DM is considered a metabolic disease that detrementally influences numerous organs, afflicts some 8% of the adult population, and shares many risk factors with AD. Research data indicates that there is a widespread conformational change in the proteins involved in AD and T2DM that form β-sheet like motifs. Although conformation of these β-sheets is common to many functional proteins, the transition from α-helix to β-sheet is a typical characteristic of amyloid deposits. Any abnormality in this transition results in protein aggregation and generation of insoluble fibrils. The abnormal and toxic proteins can interact with other native proteins and consequently catalyze their transition into the toxic state. Both AD and T2DM are prevalent in the aged population. AD is characterized by the accumulation of amyloid-β (Aβ) in brain, while T2DM is characterized by the deposition of islet amyloid polypeptide (IAPP, also known as amylin) within beta-cells of the pancreas. T2DM increases pathological angiogenesis and immature vascularisation. This also leads to chronic cerebral hypoperfusion, which results in dysfunction and degeneration of neuroglial cells. With an abundance of common mechanisms underpinning both disorders, a significant question that can be posed is whether T2DM leads to AD in aged individuals and the associations between other protein misfolding diseases.
Journal of Chemotherapy | 2008
Shazi Shakil; Mohd. Akram; Asad U. Khan
Abstract Tigecycline is the first Food and Drug Administration (FDA) approved glycylcycline antibiotic. It has shown remarkable in vitro activity against a wide variety of Gram-positive, Gram-negative and anaerobic bacteria including many multidrug resistant (MDR) strains. However, it has minimal activity against Pseudomonas aeruginosa and Proteus spp. To date, little resistance to tigecycline has been reported. Clinical trials studying complicated skin and skin-structure infections (cSSSIs) demonstrated that tigecycline has equivalent efficacy and safety compared with the combination of van-comycin and aztreonam. For complicated intra-abdominal infections (cIAIs), tigecycline was found to be as effective as imipenem/cilastatin. Adverse events related to tigecycline therapy, i.e. nausea and vomiting, were tolerable. Currently available data suggest that tigecycline may play an important role in the future as a monotherapy alternative to older broad-spectrum antibiotics, such as advanced generation cephalosporins, carbapenems, fluoroquinolones, piperacillin/tazobactam, and Gram-positive directed agents (e.g. daptomycin, linezolid and quinupristin/dalfopristin) for which resistance is being increasingly reported from all parts of the world.
Bioinformation | 2010
Shazi Shakil; Asad U. Khan
Extendedspectrum βlactamases (ESBLs) are the bacterial enzymes that make them resistant to advanced-generation cephalosporins. CTXM enzymes (the most prevalent ESBLtype) target cefotaxime. Aims of the study were: Modelling of CTXM enzyme from blaCTXM sequences of clinical Escherichia coli isolates Docking of cefotaxime with modelled CTXM enzymes to identify amino acid residues crucial to their interaction To hypothesize a possible relationship between ’interaction energy of the docked enzymeantibiotic complex‘ and ’minimum inhibitory concentration (MIC) of the antibiotic against the bacteria producing that enzyme‘. Seven E. coli strains of clinical origin which were confirmed as PCRpositive for blaCTXM were selected for the study. C600 cells harboring cloned blaCTXM were tested for ESBLproduction by doubledisksynergy test. BLAST analysis confirmed all the blaCTX-M genes as blaCTXM15. Four of the 7 strains were found to be clonally related. Modelling was performed using Swiss Model Server. Discovery Studio 2.0 (Accelrys) was used to prepare Ramachandran plots for the modelled structures. Ramachandran Zscores for modelled CTXM enzymes from E. coli strains D8, D183, D253, D281, D282, D295 and D296 were found to be 0.449, 0.096, 0.027, 0.043, 0.032, 1.249 and 1.107, respectively. Docking was performed using Hex 5.1 and the results were further confirmed by Autodock 4.0. The amino acid residues Asn 104, Asn132, Gly 227, Thr 235, Gly 236, and Ser237 were found to be responsible for positioning cefotaxime into the active site of the CTXM15 enzyme. It was found that cefotaxime MICs for the CTXM15producers increased with the increasing negative interaction energy of the enzymeantibiotic complex.
Cns & Neurological Disorders-drug Targets | 2011
Shaheena Banu; Nasimudeen R. Jabir; Cholenhally Nanjappa Manjunath; Shazi Shakil; Mohammad A. Kamal
The progress of metabolic syndrome (MetS) continues with the onset of type-2 diabetes mellitus (Type-2 DM) along with linkage to other disorders such as neurodegenerative, especially Alzheimers disease (AD), via oxidative stress and low grade systemic inflammatory process. Type-2 DM and AD are health disorders of priority research. The treatment for an individual suffering with Type- 2 DM and/or AD requires monitoring by clinicians. The aim of this study was to investigate the role of C-peptide and its correlation to insulin resistance, body mass index (BMI), β cell function, insulin sensitivity, lipid profile and hemoglobin A1c (HbA1c). The study was designed to include 96 Type-2 DM individuals from India. 58.3% males and 41.7% females were selected and fasting blood samples were collected for estimation of fasting C-peptide, fasting blood sugar (FBS), postprandial blood sugar (PPBS), HbA1c and lipid profile. Analysis was done on Hitachi912 and Elecsys 2010 using Roche reagents and standard controls. Anthropometries to calculate BMI and β cell function, insulin sensitivity, and insulin resistance were obtained. The statistical tool ANOVA, followed by calculation of p-value and r � value were applied for investigating correlation of C-peptide levels to those of high density lipoprotein-C (HDL-C), low density lipoprotein-C (LDL-C), triglycerides (TGL), HbA1c, β cell function, insulin sensitivity and insulin resistance. Highly significant positive correlations were observed in different quantiles of C-peptide levels to the studied parameters of MetS, BMI and % β cell function. Lower HDL-C level was found to be significantly related to higher C-peptide levels. Similarly, TGL and C-peptide levels displayed a significant positive correlation. A significant negative correlation was observed between C-peptide quantiles and % sensitivity. Thus, insulin resistance showed a positive correlation until the fourth quantile. No significant correlation was observed between C-peptide and HbA1c levels. This study demonstrates that assessment of C-peptide levels is a useful tool to monitor the progress of MetS among patients suffering from Type-2 DM and AD, as these disorders are intertwined to each other by common metabolic pathways. Assessment of C-peptide levels, along with HDL-C levels, in patients can be used to monitor insulin resistance.
Excli Journal | 2015
Syed Mohd. Danish Rizvi; Sibhghatulla Shaikh; Shah Mohammad Abbas Waseem; Shazi Shakil; Adel M. Abuzenadah; Deboshree Biswas; Shams Tabrez; Ghulam Md Ashraf; Mohammad A. Kamal
Recent data have suggested a strong possible link between Type 2 Diabetes Mellitus and Alzheimers disease (AD), although exact mechanisms linking the two are still a matter of research and debate. Interestingly, both are diseases with high incidence and prevalence in later years of life. The link appears so strong that some scientists use Alzheimers and Type 3 Diabetes interchangeably. In depth study of recent data suggests that the anti diabetic drugs not only have possible role in treatment of Alzheimers but may also arrest the declining cognitive functions associated with it. The present review gives an insight into the possible links, existing therapeutics and clinical trials of anti diabetic drugs in patients suffering from AD primarily or as co-morbidity. It may be concluded that the possible beneficial effects and usefulness of the current anti diabetic drugs in AD cannot be neglected and further research is required to achieve positive results. Currently, several drug trials are in progress to give conclusive evidence based data.