Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheeja Aravindan is active.

Publication


Featured researches published by Sheeja Aravindan.


Journal of Biological Chemistry | 2011

Radiation-triggered Tumor Necrosis Factor (TNF) α-NFκB Cross-signaling Favors Survival Advantage in Human Neuroblastoma Cells

Jamunarani Veeraraghavan; Mohan Natarajan; Sheeja Aravindan; Terence S. Herman; Natarajan Aravindan

Induced radioresistance in the surviving cancer cells after radiotherapy could be associated with clonal selection leading to tumor regrowth at the treatment site. Previously we reported that post-translational modification of IκBα activates NFκB in response to ionizing radiation (IR) and plays a key role in regulating apoptotic signaling. Herein, we investigated the orchestration of NFκB after IR in human neuroblastoma. Both in vitro (SH-SY5Y, SK-N-MC, and IMR-32) and in vivo (xenograft) studies showed that IR persistently induced NFκB DNA binding activity and NFκB-dependent TNFα transactivation and secretion. Approaches including silencing NFκB transcription, blocking post-translational NFκB nuclear import, muting TNF receptor, overexpression, and physiological induction of either NFκB or TNFα precisely demonstrated the initiation and occurrence of NFκB → TNFα → NFκB positive feedback cycle after IR that leads to and sustains NFκB activation. Selective TNF-dependent NFκB regulation was confirmed with futile inhibition of AP-1 and SP-1 in TNF receptor muted cells. Moreover, IR increased both transactivation and translation of Birc1, Birc2, and Birc5 and induced metabolic activity and clonal expansion. This pathway was further defined to show that IR-induced functional p65 transcription (not NFκB1, NFκB2, or c-Rel) is necessary for activation of these survival molecules and associated survival advantage. Together, these results demonstrate for the first time the functional orchestration of NFκB in response to IR and further imply that p65-dependent survival advantage and initiation of clonal expansion may correlate with an unfavorable prognosis of human neuroblastoma.


Renal Failure | 2007

Furosemide Prevents Apoptosis and Associated Gene Expression in a Rat Model of Surgical Ischemic Acute Renal Failure

Natarajan Aravindan; Sheeja Aravindan; Bernhard Riedel; Han-Rong Weng; Andrew D. Shaw

Recently, we demonstrated that furosemide improves renal hemodynamics and attenuates ischemia/reperfusion (I/R)-associated changes in angiogenesis-related gene expression. However, the effect of furosemide on I/R-induced apoptosis is not known. We utilized a rat model of acute ischemic nephropathy to test the hypothesis that furosemide attenuates I/R-induced apoptosis. Male Sprague-Dawley rats anesthetized with urethane (50 mg/kg) were randomly allocated into four groups (n = 6 each): sham operated saline infusion, sham operated with furosemide (30 μg/kg/hr) infusion, unilateral renal ischemia (1hr) followed by six hours of reperfusion, and I/R with furosemide infusion. Apoptosis was measured in kidney samples and compared between groups using ANOVA with Bonferroni correction. Apoptosis-related gene expression was assessed using microarray analysis and validated with RT-PCR. Phosphorylation of Akt was analyzed using ELISA, and data were compared between groups using the Mann Whitney U test. Compared to the control group, I/R significantly (p < 0.001) induced apoptosis in both the cortex and medulla. Similarly, microarray analysis revealed that I/R induced (≤two-fold increase compared to control group) 73 apoptosis-related genes. Phosphorylation of Akt was significantly (p < 0.05) downregulated after I/R. Treatment with furosemide significantly (p < 0.001) reduced I/R-induced apoptosis in both the cortex and medulla and attenuated the expression of 72 I/R-induced apoptosis-related genes. Compared to the I/R group, furosemide significantly (p < 0.01) upregulated the phosphorylation of Akt. These data suggest that a low dose furosemide infusion may attenuate I/R-induced apoptosis and associated gene transcription, and imply a possible novel molecular basis for the mechanism of action of furosemide in acute renal failure.


PLOS ONE | 2013

Anti-pancreatic cancer deliverables from sea: first-hand evidence on the efficacy, molecular targets and mode of action for multifarious polyphenols from five different brown-algae.

Sheeja Aravindan; Caroline R. Delma; Somasundaram S. Thirugnanasambandan; Terence S. Herman; Natarajan Aravindan

Pancreatic cancer (PC) remains the fourth leading cause of cancer death with an unacceptable survival that has remained relatively unchanged over the past 25 years. The presence of occult or clinical metastases at the time of diagnosis together with the lack of effective chemotherapies pose a dire need for designing new and targeted therapeutic deliverables that favors the clinical outcome. Herein, we investigated the anti-tumorigenic potential of polyphenols from five different brown-algae in human PC cells (MiaPaCa-2, Panc-1, BXPC-3 and Panc-3.27). Total anti-oxidant capacity (TAC) analysis on stepwise polyphenol separations with increasing polarity (Hexane-DCM-EA-methanol) identified high levels of TAC in DCM and EA extractions across all seaweeds assessed. All DCM and EA separated polyphenols induced a dose-dependent and sustained (time-independent) inhibition of cell proliferation and viability. Further, these polyphenols profoundly enhanced DNA damage (acridine orange/Ethidium bromide staining and DNA fragmentation) in all the cell lines investigated. More importantly, luciferase reporter assay revealed a significant inhibition of NFκB transcription in cells treated with polyphenols. Interestingly, QPCR analysis identified a differential yet definite regulation of pro-tumorigenic EGFR, VEGFA, AKT, hTERT, kRas, Bcl2, FGFα and PDGFα transcription in cells treated with DCM and EA polyphenols. Immunoblotting validates the inhibitory potential of seaweed polyphenols in EGFR phosphorylation, kRas, AurKβ and Stat3. Together, these data suggest that intermediate polarity based fractions of seaweed polyphenols may significantly potentiate tumor cell killing and may serve as potential drug deliverable for PC cure. More Studies dissecting out the active constituents in potent fractions, mechanisms of action and synergism, if any, are warranted and are currently in process.


Cancer Gene Therapy | 2014

Abscopal effect of low-LET γ-radiation mediated through Rel protein signal transduction in a mouse model of nontargeted radiation response

Sheeja Aravindan; Mohan Natarajan; Satishkumar Ramraj; Vijayabaskar Pandian; Faizan H. Khan; Terence S. Herman; Natarajan Aravindan

Ascertaining the ionizing radiation (IR)-induced bystander response and its preceding molecular regulation would increase our understanding of the mechanism of acute and delayed radiobiological effects. Recent evidence clearly prompted that radiation-induced nuclear factor kappa B (NF-κB) would play a key role in bystander responses in nontargeted cells. Accordingly, we investigated the orchestration of NF-κB signaling after IR in a nontargeted distant organ. Heart tissues from C57/BL6 mice either mock irradiated or exposed (limited to lower abdomen 1 cm diameter) to single-dose IR (SDR: 2 or 10 Gy) or fractionated IR (FIR, 2 Gy per day for 5 days) were examined for onset of abscopal NF-κB signal transduction, translated activity, downstream functional signaling and associated DNA damage. Radiation significantly induced NF-κB DNA binding activity in nontargeted heart. Transcriptional profiling showed that 51, 46 and 26 of 88 genes were significantly upregulated after 2 Gy, 10 Gy and FIR. Of these genes, 22 showed dose- and fractionation-independent upregulation. Immunohistochemistry revealed a robust increase in p65 and cMyc expression in distant heart after SDR and FIR. Immunoblotting revealed increased phosphorylation of p38 after 2 Gy and extracellular signal-regulated kinases 1/2 after 10 Gy in nontargeted heart. In addition, IR exposure significantly enhanced DNA fragmentation in nontargeted heart. Together, these data clearly indicated an induced abscopal response in distant organ after clinically relevant IR doses. More importantly, the results imply that orchestration of NF-κB signal transduction in nontargeted tissues may serve as an effector and could play a key role in induced abscopal responses.


PLOS ONE | 2011

Irreversible egfr inhibitor ekb-569 targets low-let γ-radiation-triggered rel orchestration and potentiates cell death in squamous cell carcinoma

Natarajan Aravindan; Charles R. Thomas; Sheeja Aravindan; Aswathi S. Mohan; Jamunarani Veeraraghavan; Mohan Natarajan

EKB-569 (Pelitinib), an irreversible EGFR tyrosine kinase inhibitor has shown potential therapeutic efficiency in solid tumors. However, cell-killing potential in combination with radiotherapy and its underlying molecular orchestration remain to be explored. The objective of this study was to determine the effect of EKB-569 on ionizing radiation (IR)-associated NFκB-dependent cell death. SCC-4 and SCC-9 cells exposed to IR (2Gy) with and without EKB-569 treatment were analyzed for transactivation of 88 NFκB pathway molecules, NFκB DNA-binding activity, translation of the NFκB downstream mediators, Birc1, 2 and 5, cell viability, metabolic activity and apoptosis. Selective targeting of IR-induced NFκB by EKB-569 and its influence on cell-fate were assessed by overexpressing (p50/p65) and silencing (ΔIκBα) NFκB. QPCR profiling after IR exposure revealed a significant induction of 74 NFκB signal transduction molecules. Of those, 72 were suppressed with EKB-569. EMSA revealed a dose dependent inhibition of NFκB by EKB-569. More importantly, EKB-569 inhibited IR-induced NFκB in a dose-dependent manner, and this inhibition was sustained up to at least 72 h. Immunoblotting revealed a significant suppression of IR-induced Birc1, 2 and 5 by EKB-569. We observed a dose-dependent inhibition of cell viability, metabolic activity and apoptosis with EKB-569. EKB-569 significantly enhanced IR-induced cell death and apoptosis. Blocking NFκB improved IR-induced cell death. Conversely, NFκB overexpression negates EKB-569 -induced cell-killing. Together, these pre-clinical data suggest that EKB-569 is a radiosensitizer of squamous cell carcinoma and may mechanistically involve selective targeting of IR-induced NFκB-dependent survival signaling. Further pre-clinical in-vivo studies are warranted.


International Journal of Radiation Oncology Biology Physics | 2014

Acquired tumor cell radiation resistance at the treatment site is mediated through radiation-orchestrated intercellular communication

Natarajan Aravindan; Sheeja Aravindan; Vijayabaskar Pandian; Faizan H. Khan; Satish Kumar Ramraj; Praveen Natt; Mohan Natarajan

PURPOSE Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. RESULTS Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. CONCLUSIONS Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells.


Radiation Oncology | 2013

Molecular basis of ‘hypoxic’ breast cancer cell radio-sensitization: phytochemicals converge on radiation induced Rel signaling

Sheeja Aravindan; Mohan Natarajan; Terence S. Herman; Vibhudutta Awasthi; Natarajan Aravindan

BackgroundHeterogeneously distributed hypoxic areas are a characteristic property of locally advanced breast cancers (BCa) and generally associated with therapeutic resistance, metastases, and poor patient survival. About 50% of locally advanced BCa, where radiotherapy is less effective are suggested to be due to hypoxic regions. In this study, we investigated the potential of bioactive phytochemicals in radio-sensitizing hypoxic BCa cells.MethodsHypoxic (O2-2.5%; N2-92.5%; CO2-5%) MCF-7 cells were exposed to 4 Gy radiation (IR) alone or after pretreatment with Curcumin (CUR), curcumin analog EF24, neem leaf extract (NLE), Genistein (GEN), Resveratrol (RES) or raspberry extract (RSE). The cells were examined for inhibition of NFκB activity, transcriptional modulation of 88 NFκB signaling pathway genes, activation and cellular localization of radio-responsive NFκB related mediators, eNos, Erk1/2, SOD2, Akt1/2/3, p50, p65, pIκBα, TNFα, Birc-1, -2, -5 and associated induction of cell death.ResultsEMSA revealed that cells exposed to phytochemicals showed complete suppression of IR-induced NFκB. Relatively, cells exposed EF24 revealed a robust inhibition of IR-induced NFκB. QPCR profiling showed induced expression of 53 NFκB signaling pathway genes after IR. Conversely, 53, 50, 53, 53, 53 and 53 of IR-induced genes were inhibited with EF24, NLE, CUR, GEN, RES and RSE respectively. In addition, 25, 29, 24, 16, 11 and 21 of 35 IR-suppressed genes were further inhibited with EF24, NLE, CUR, GEN, RES and RSE respectively. Immunoblotting revealed a significant attenuating effect of IR-modulated radio-responsive eNos, Erk1/2, SOD2, Akt1/2/3, p50, p65, pIκBα, TNFα, Birc-1, -2 and −5 with EF24, NLE, CUR, GEN, RES or RSE. Annexin V-FITC staining showed a consistent and significant induction of IR-induced cell death with these phytochemicals. Notably, EF24 robustly conferred IR-induced cell death.ConclusionsTogether, these data identifies the potential hypoxic cell radio-sensitizers and further implies that the induced radio-sensitization may be exerted by selectively targeting IR-induced NFκB signaling.


BMC Genomics | 2015

Reorganization of metastamiRs in the evolution of metastatic aggressive neuroblastoma cells

Faizan H. Khan; Vijayabaskar Pandian; Satishkumar Ramraj; Sheeja Aravindan; Terence S. Herman; Natarajan Aravindan

BackgroundMetastamiRs have momentous clinical relevance and have been correlated with disease progression in many tumors. In this study, we identified neuroblastoma metastamiRs exploiting unique mouse models of favorable and high-risk metastatic human neuroblastoma. Further, we related their deregulation to the modulation of target proteins and established their association with clinical outcomes.ResultsWhole genome miRNA microarray analysis identified 74 metastamiRs across the manifold of metastatic tumors. RT-qPCR on select miRNAs validated profile expression. Results from bio-informatics across the ingenuity pathway, miRCancer, and literature data-mining endorsed the expression of these miRNAs in multiple tumor systems and showed their role in metastasis, identifying them as metastamiRs. Immunoblotting and TMA-IHC analyses revealed alterations in the expression/phosphorylation of metastamiRs’ targets, including ADAMTS-1, AKT1/2/3, ASK1, AURKβ, Birc1, Birc2, Bric5, β-CATENIN, CASP8, CD54, CDK4, CREB, CTGF, CXCR4, CYCLIN-D1, EGFR, ELK1, ESR1, CFOS, FOSB, FRA, GRB10, GSK3β, IL1α, JUND, kRAS, KRTAP1, MCP1, MEGF10, MMP2, MMP3, MMP9, MMP10, MTA2, MYB, cMYC, NF2, NOS3, P21, pP38, PTPN3, CLEAVED PARP, PKC, SDF-1β, SEMA3D, SELE, STAT3, TLR3, TNFα, TNFR1, and VEGF in aggressive cells ex vivo and in a manifold of metastatic tumors in vivo. miRNA mimic (hsa-miR-125b, hsa-miR-27b, hsa-miR-93, hsa-miR-20a) and inhibitor (hsa-miR-1224-3p, hsa-miR-1260) approach for select miRNAs revealed the direct influence of the altered metastamiRs in the regulation of identified protein targets. Clinical outcome association analysis with the validated metastamiRs’ targets corresponded strongly with poor overall and relapse-free survival.ConclusionsFor the first time, these results identified a comprehensive list of neuroblastoma metastamiRs, related their deregulation to altered expression of protein targets, and established their association with poor clinical outcomes. The identified set of distinctive neuroblastoma metastamiRs could serve as potential candidates for diagnostic markers for the switch from favorable to high-risk metastatic disease.


BMC Cancer | 2015

Acquired genetic alterations in tumor cells dictate the development of high-risk neuroblastoma and clinical outcomes

Faizan H. Khan; Vijayabaskar Pandian; Satishkumar Ramraj; Mohan Natarajan; Sheeja Aravindan; Terence S. Herman; Natarajan Aravindan

BackgroundDetermining the driving factors and molecular flow-through that define the switch from favorable to aggressive high-risk disease is critical to the betterment of neuroblastoma cure.MethodsIn this study, we examined the cytogenetic and tumorigenic physiognomies of distinct population of metastatic site- derived aggressive cells (MSDACs) from high-risk tumors, and showed the influence of acquired genetic rearrangements on poor patient outcomes.ResultsKaryotyping in SH-SY5Y and MSDACs revealed trisomy of 1q, with additional non-random chromosomal rearrangements on 1q32, 8p23, 9q34, 15q24, 22q13 (additions), and 7q32 (deletion). Array CGH analysis of individual clones of MSDACs revealed genetic alterations in chromosomes 1, 7, 8, and 22, corresponding to a gain in the copy numbers of LOC100288142, CD1C, CFHR3, FOXP2, MDFIC, RALYL, CSMD3, SAMD12-AS1, and MAL2, and a loss in ADAM5, LOC400927, APOBEC3B, RPL3, MGAT3, SLC25A17, EP300, L3MBTL2, SERHL, POLDIP3, A4GALT, and TTLL1. QPCR analysis and immunoblotting showed a definite association between DNA-copy number changes and matching transcriptional/translational expression in clones of MSDACs. Further, MSDACs exert a stem-like phenotype. Under serum-free conditions, MSDACs demonstrated profound tumorosphere formation ex vivo. Moreover, MSDACs exhibited high tumorigenic capacity in vivo and prompted aggressive metastatic disease. Tissue microarray analysis coupled with automated IHC revealed significant association of RALYL to the tumor grade in a cohort of 25 neuroblastoma patients. Clinical outcome association analysis showed a strong correlation between the expression of CFHR3, CSMD3, MDFIC, FOXP2, RALYL, POLDIP3, SLC25A17, SERHL, MGAT3, TTLL1, or LOC400927 and overall and relapse-free survival in patients with neuroblastoma.ConclusionTogether, these data highlight the ongoing acquired genetic rearrangements in undifferentiated tumor-forming neural crest cells, and suggest that these alterations could switch favorable neuroblastoma to high-risk aggressive disease, promoting poor clinical outcomes.


Journal of Biomedical Science | 2015

Novel adjuvants from seaweed impede autophagy signaling in therapy-resistant residual pancreatic cancer

Sheeja Aravindan; Satish Kumar Ramraj; S.T. Somasundaram; Natarajan Aravindan

BackgroundIdentifying the drug-deliverables that target autophagy is crucial to finding a cure for pancreatic cancer (PC), as activated autophagy is associated with poor patient outcomes. Our recent studies recognized the anti-PC potential of an antioxidant-rich collection of seaweed polyphenols and identified potential compounds for the treatment of PC. Accordingly, we investigated whether such compounds could regulate autophagy in therapy-resistant PC cells in vitro and in residual PC in vivo.ResultsHuman Panc-3.27 and MiaPaCa-2 cells were exposed to fractionated irradiation (FIR) with/without ethyl acetate (EA) polyphenol from Spatoglossum asperum (SA-EA), Padina tetrastromatica (PT-EA), or Hormophysa triquerta (HT-EA). The cells were subjected to QPCR to examine transcriptional alterations in the following autophagy functional regulators: ATG3, ATG5, ATG7, ATG12, LC3A, LC3B, Beclin, Myd88, HMGB1, Rage, and TLRs 1-9. Using a clinically relevant mouse model of residual PC, we use tissue microarray (TMA) and immunohistochemistry (IHC) procedures to investigate the potential of polyphenol(s) to target ATG3, ATG5, ATG12, LC3A, LC3B, BECN1, and SURIVIN after clinical radiotherapy. Radiation significantly increased the transcription of autophagy functional regulators in both cell lines. Seaweed polyphenols completely suppressed the transcription of all investigated autophagy regulators in both cell-lines. Gene silencing approach defined the role of LC3B in radiation-induced cell survival in this setting. TMA-IHC analysis revealed the complete regulation of ATG3, ATG5, ATG12, LC3A, LC3B, BECN1, and SURVIVIN in residual PC following SA-EA, PT-EA, and HT-EA treatment.ConclusionsThese data demonstrate the autophagy blue print in therapy-resistant PC cells for the first time. Moreover, the data strongly suggest that the selected polyphenols could serve as effective adjuvants for current PC treatment modalities and may inhibit tumor relapse by comprehensively targeting therapy-orchestrated autophagy in residual cells.

Collaboration


Dive into the Sheeja Aravindan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terence S. Herman

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Mohan Natarajan

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Faizan H. Khan

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Satish Kumar Ramraj

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Vijayabaskar Pandian

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satishkumar Ramraj

University of Oklahoma Health Sciences Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge