Shehla Hafeez
Aligarh Muslim University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shehla Hafeez.
Phase Transitions | 2010
Saba Beg; Shehla Hafeez; Niyazi A.S. Al-Areqi
Samples of Bi4Ca x V2− x O11−(3 x /2)−δ in the composition range 0.07 ≤ x ≤ 0.30 were prepared by conventional solid state reactions. The stability of different phases as a function of composition was analysed by X-ray powder diffraction, FT-IR spectra, differential thermal analysis and AC impedance spectroscopy. For the compositions x ≤ 0.10, monoclinic α-phase structure is retained at room temperature. For x = 0.13, orthorhombic β-phase is observed, whereas for x ≥ 0.17, high O2−conducting tetragonal γ-phase is stabilised. However, the highest ionic conductivity σ300°C = 3.27 × 10−4 S cm−1 was observed for x = 0.17. This higher value of conductivity of the substituted compound as compared to the parent compound can be attributed to the increased oxygen ion vacancies generated as a result of cation doping. AC impedance spectroscopy reveals the fact that this ionic conductivity is mainly due to the grain contribution.
Defect and Diffusion Forum | 2011
Saba Beg; Shehla Hafeez; Niyazi A.S. Al-Areqi
Ceramic solid solutions Bi4MnxV2–xO11–(x/2)–δ in the composition range 0.07 ≤ x ≤ 0.30 were obtained by solid state synthesis. Structural investigations were carried out by using a combination of FT-IR and powder X-ray diffraction technique. Polymorphic transitions (β↔γ and γ′↔γ) were detected by DTA and variation in the Arrhenius plots of conductivity. The solid solutions with composition 0.07 ≤ x ≤ 0.17 are isostructural with the orthorhombic β-phase, and those with x ≤ 0.30 represent tetragonal γ-phase. With increasing Mn concentration, the conductivity of solid solutions increases from 3.684×10-6 (x = 0.07) to 2.467×10-5 (x = 0.17). AC impedance plots show that the conductivity is mainly due to the grain contribution which is evident in the enhanced short range diffusion of oxide ion vacancy in the grains with increasing temperature.
Philosophical Magazine | 2010
Saba Beg; Shehla Hafeez; Niyazi A.S. Al-Areqi
Samples of Sn4+-substituted bismuth vanadate, formulated as Bi4Sn x V2− x O11−( x /2)− δ in the composition range 0.07 ≤ x ≤ 0.30, were prepared by standard solid-state reactions. Sample characterization and the principal phase transitions (α ↔ β, β ↔ γ and γ′ ↔ γ) were investigated by FT-IR spectroscopy, X-ray powder diffraction, differential thermal analysis (DTA) and AC impedance spectroscopy. For composition x = 0.07, the α ↔ β and β ↔ γ phase transitions were observed at temperatures of 451 and 536°C, respectively. DTA thermograms and Arrhenius plots of conductivities revealed the γ′ ↔ γ phase transition at 411 and 423°C for x = 0.20 and 0.30, respectively. AC impedance plots showed that conductivity is mainly due to the grain contribution, which is evident in the enhanced short-range diffusion of oxide ion vacancy in the grains with increasing temperature. The highest ionic conductivity (5.03 × 10−5 S cm−1 at 300°C) was observed for the x = 0.17 solid solution with less pronounced thermal hysteresis.
Phase Transitions | 2014
Niyazi A.S. Al-Areqi; Saba Beg; Ahlam Al-Alas; Shehla Hafeez
BICO0.20−xNIxVOX solid electrolyte in the composition range 0 ≤ x ≤ 0.20 was synthesized by standard solid-state reactions. The influence of Ni substitution for Co on the relationship between the phase stabilization and electrical performance was investigated by means of X-ray powder diffraction (XRPD), differential thermal analysis (DTA) and AC impedance spectroscopy. The highly conductive γ′-phase was effectively stabilized at room temperature for compositions with x ≥ 0.13 whose thermal stability increases with Ni content. On the other hand, complex plane plots of impedance suggested a major contribution of polycrystalline grain interiors to the overall electrical conductivity and the fastest oxygen-vacancy diffusion in the perovskite vanadate layers at x = 0.13. The dielectric permittivity measurements revealed the fact that suppression of the ferroelectric transition is compositionally dependent. However, a maximum ionic conductivity at lower temperatures (∼2.56 × 10−4 S cm−1 at 300 °C) was observed for the composition with x = 0.13.
Philosophical Magazine | 2014
Saba Beg; Niyazi A.S. Al-Areqi; Kh.A.S. Ghaleb; Ahlam Al-Alas; Shehla Hafeez
The BICO0.20–xNIxVOX solid electrolyte was synthesized by the standard solid-state reaction. The effect of Ni(II) substitution for Co(III) on phase stabilization and oxide-ion performance has been investigated in the compositional range 0 ≤ x ≤ 0.20 using X-ray powder diffraction, differential thermal analysis and AC impedance spectroscopy. The highly conductive γ′-phase was effectively stabilized at room temperature for compositions with x ≥ 0.13 whose thermal stability increases with Ni content. The complex plane plots of impedance were typically represented at temperatures below 380 °C, suggesting a major contribution of polycrystalline grains to the overall electrical conductivity. The dielectric permittivity measurements revealed the fact that suppression of the ferroelectric transition is compositionally dependent. Interestingly, the maximum ionic conductivity at lower temperatures (~2.56 × 10−4 S cm−1 at 300 °C) was observed for the composition with x = 0.13. The variation of low-temperature conductivity with Ni content was accompanied with a general drop in the corresponding values of ΔELT. However, the local minimum high-temperature conductivity, σ600 °C ~ 2.26 × 10−2 S cm−1 for x = 0.10, coupled with a local maximum value of ΔEHT ~ 0.48 eV was attributed to an increased defect trapping effect correlated with the V(V) → V(IV) reduction at elevated temperatures.
Journal of The European Ceramic Society | 2013
Ahlam Al-Alas; Saba Beg; Niyazi A.S. Al-Areqi; Shehla Hafeez
Physica B-condensed Matter | 2009
Saba Beg; Niyazi A.S. Al-Areqi; Ahlam Al-Alas; Shehla Hafeez
Solid State Ionics | 2014
Saba Beg; Shehla Hafeez; Niyazi A.S. Al-Areqi
Physica B-condensed Matter | 2010
Saba Beg; Shehla Hafeez; Niyazi A.S. Al-Areqi
Ionics | 2015
Saba Beg; Niyazi Abdulmawla Sallam Al–Areqi; Shehla Hafeez; Ahlam Al–Alas