Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheikh Riazuddin is active.

Publication


Featured researches published by Sheikh Riazuddin.


Nature Genetics | 2002

Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function.

Kiyoto Kurima; Linda M. Peters; Yandan Yang; Saima Riazuddin; Zubair M. Ahmed; Sadaf Naz; Deidre Arnaud; Stacy Drury; Jianhong Mo; Tomoko Makishima; Manju Ghosh; P.S.N. Menon; Dilip Deshmukh; Carole Oddoux; Harry Ostrer; Shaheen N. Khan; Sheikh Riazuddin; Prescott L. Deininger; Lori L. Hampton; Susan L. Sullivan; James F. Battey; Bronya J.B. Keats; Edward R. Wilcox; Thomas B. Friedman; Andrew J. Griffith

Positional cloning of hereditary deafness genes is a direct approach to identify molecules and mechanisms underlying auditory function. Here we report a locus for dominant deafness, DFNA36, which maps to human chromosome 9q13–21 in a region overlapping the DFNB7/B11 locus for recessive deafness. We identified eight mutations in a new gene, transmembrane cochlear-expressed gene 1 (TMC1), in a DFNA36 family and eleven DFNB7/B11 families. We detected a 1.6-kb genomic deletion encompassing exon 14 of Tmc1 in the recessive deafness (dn) mouse mutant, which lacks auditory responses and has hair-cell degeneration. TMC1 and TMC2 on chromosome 20p13 are members of a gene family predicted to encode transmembrane proteins. Tmc1 mRNA is expressed in hair cells of the postnatal mouse cochlea and vestibular end organs and is required for normal function of cochlear hair cells.


Journal of Medical Genetics | 2003

Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians: global implications for the epidemiology of deafness

H. J. Park; S. Shaukat; Xuezhong Liu; S. H. Hahn; Sadaf Naz; Manju Ghosh; H. N. Kim; S. K. Moon; Satoko Abe; K. Tukamoto; Sheikh Riazuddin; M. Kabra; R. Erdenetungalag; J. Radnaabazar; Shaheen N. Khan; Arti Pandya; Shin-ichi Usami; Walter E. Nance; Edward R. Wilcox; Andrew J. Griffith

Recessive mutations of SLC26A4 (PDS) are a common cause of Pendred syndrome and non-syndromic deafness in western populations. Although south and east Asia contain nearly one half of the global population, the origins and frequencies of SLC26A4 mutations in these regions are unknown. We PCR amplified and sequenced seven exons of SLC26A4 to detect selected mutations in 274 deaf probands from Korea, China, and Mongolia. A total of nine different mutations of SLC26A4 were detected among 15 (5.5%) of the 274 probands. Five mutations were novel and the other four had seldom, if ever, been identified outside east Asia. To identify mutations in south Asians, 212 Pakistani and 106 Indian families with three or more affected offspring of consanguineous matings were analysed for cosegregation of recessive deafness with short tandem repeat markers linked to SLC26A4. All 21 SLC26A4 exons were PCR amplified and sequenced in families segregating SLC26A4 linked deafness. Eleven mutant alleles of SLC26A4 were identified among 17 (5.4%) of the 318 families, and all 11 alleles were novel. SLC26A4 linked haplotypes on chromosomes with recurrent mutations were consistent with founder effects. Our observation of a diverse allelic series unique to each ethnic group indicates that mutational events at SLC26A4 are common and account for approximately 5% of recessive deafness in south Asians and other populations.


The Journal of Neuroscience | 2006

The Tip-Link Antigen, a Protein Associated with the Transduction Complex of Sensory Hair Cells, Is Protocadherin-15

Zubair M. Ahmed; Richard Goodyear; Saima Riazuddin; Ayala Lagziel; P. Kevin Legan; Martine Behra; Shawn M. Burgess; Kathryn S. Lilley; Edward R. Wilcox; Sheikh Riazuddin; Andrew J. Griffith; Gregory I. Frolenkov; Inna A. Belyantseva; Guy P. Richardson; Thomas B. Friedman

Sound and acceleration are detected by hair bundles, mechanosensory structures located at the apical pole of hair cells in the inner ear. The different elements of the hair bundle, the stereocilia and a kinocilium, are interconnected by a variety of link types. One of these links, the tip link, connects the top of a shorter stereocilium with the lateral membrane of an adjacent taller stereocilium and may gate the mechanotransducer channel of the hair cell. Mass spectrometric and Western blot analyses identify the tip-link antigen, a hitherto unidentified antigen specifically associated with the tip and kinocilial links of sensory hair bundles in the inner ear and the ciliary calyx of photoreceptors in the eye, as an avian ortholog of human protocadherin-15, a product of the gene for the deaf/blindness Usher syndrome type 1F/DFNB23 locus. Multiple protocadherin-15 transcripts are shown to be expressed in the mouse inner ear, and these define four major isoform classes, two with entirely novel, previously unidentified cytoplasmic domains. Antibodies to the three cytoplasmic domain-containing isoform classes reveal that each has a different spatiotemporal expression pattern in the developing and mature inner ear. Two isoforms are distributed in a manner compatible for association with the tip-link complex. An isoform located at the tips of stereocilia is sensitive to calcium chelation and proteolysis with subtilisin and reappears at the tips of stereocilia as transduction recovers after the removal of calcium chelators. Protocadherin-15 is therefore associated with the tip-link complex and may be an integral component of this structure and/or required for its formation.


Nature Genetics | 2012

Alterations of the CIB2 calcium- and integrin-binding protein cause Usher syndrome type 1J and nonsyndromic deafness DFNB48

Saima Riazuddin; Inna A. Belyantseva; Arnaud P. Giese; Kwanghyuk Lee; Artur A. Indzhykulian; Sri Pratima Nandamuri; Rizwan Yousaf; Ghanshyam P. Sinha; Sue Lee; David Terrell; Rashmi S. Hegde; Saima Anwar; Paula B. Andrade-Elizondo; Asli Sirmaci; Leslie V. Parise; Sulman Basit; Abdul Wali; Muhammad Ayub; Muhammad Ansar; Wasim Ahmad; Shaheen N. Khan; Javed Akram; Mustafa Tekin; Sheikh Riazuddin; Tiffany Cook; Elke K. Buschbeck; Gregory I. Frolenkov; Suzanne M. Leal; Thomas B. Friedman; Zubair M. Ahmed

Sensorineural hearing loss is genetically heterogeneous. Here, we report that mutations in CIB2, which encodes a calcium- and integrin-binding protein, are associated with nonsyndromic deafness (DFNB48) and Usher syndrome type 1J (USH1J). One mutation in CIB2 is a prevalent cause of deafness DFNB48 in Pakistan; other CIB2 mutations contribute to deafness elsewhere in the world. In mice, CIB2 is localized to the mechanosensory stereocilia of inner ear hair cells and to retinal photoreceptor and pigmented epithelium cells. Consistent with molecular modeling predictions of calcium binding, CIB2 significantly decreased the ATP-induced calcium responses in heterologous cells, whereas mutations in deafness DFNB48 altered CIB2 effects on calcium responses. Furthermore, in zebrafish and Drosophila melanogaster, CIB2 is essential for the function and proper development of hair cells and retinal photoreceptor cells. We also show that CIB2 is a new member of the vertebrate Usher interactome.


Virology Journal | 2011

An overview of HCV molecular biology, replication and immune responses

Usman Ali Ashfaq; Tariq Javed; Sidra Rehman; Zafar Nawaz; Sheikh Riazuddin

Hepatitis C virus (HCV) causes acute and chronic hepatitis which can eventually lead to permanent liver damage, hepatocellular carcinoma and death. Currently, there is no vaccine available for prevention of HCV infection due to high degree of strain variation. The current treatment of care, Pegylated interferon α in combination with ribavirin is costly, has significant side effects and fails to cure about half of all infections. In this review, we summarize molecular virology, replication and immune responses against HCV and discussed how HCV escape from adaptive and humoral immune responses. This advance knowledge will be helpful for development of vaccine against HCV and discovery of new medicines both from synthetic chemistry and natural sources.


European Journal of Human Genetics | 2009

Identification of two new mutations in the GPR98 and the PDE6B genes segregating in a Tunisian family

Mounira Hmani-Aifa; Zeineb Benzina; Fareeha Zulfiqar; Houria Dhouib; Amber Shahzadi; Abdelmonem Ghorbel; Ahmed Rebai; Peter Söderkvist; Sheikh Riazuddin; William J. Kimberling; Hammadi Ayadi

Autosomal recessive retinitis pigmentosa (ARRP) is a genetically heterogeneous disorder. ARRP could be associated with extraocular manifestations that define specific syndromes such as Usher syndrome (USH) characterized by retinal degeneration and congenital hearing loss (HL). The USH type II (USH2) associates RP and mild-to-moderate HL with preserved vestibular function. At least three genes USH2A, the very large G-protein-coupled receptor, GPR98, and DFNB31 are responsible for USH2 syndrome. Here, we report on the segregation of non-syndromic ARRP and USH2 syndrome in a consanguineous Tunisian family, which was previously used to define USH2B locus. With regard to the co-occurrence of these two different pathologies, clinical and genetic reanalysis of the extended family showed (i) phenotypic heterogeneity within USH2 patients and (ii) excluded linkage to USH2B locus. Indeed, linkage analysis disclosed the cosegregation of the USH2 phenotype with the USH2C locus markers, D5S428 and D5S618, whereas the ARRP perfectly segregates with PDE6B flanking markers D4S3360 and D4S2930. Molecular analysis revealed two new missense mutations, p.Y6044C and p.W807R, occurring in GPR98 and PDE6B genes, respectively. In conclusion, our results show that the USH2B locus at chromosome 3p23–24.2 does not exist, and we therefore withdraw this locus designation. The combination of molecular findings for GPR98 and PDE6B genes enable us to explain the phenotypic heterogeneity and particularly the severe ocular affection first observed in one USH2 patient. This report presents an illustration of how consanguinity could increase familial clustering of multiple hereditary diseases within the same family.


Human Genetics | 2011

Mutations of GIPC3 cause nonsyndromic hearing loss DFNB72 but not DFNB81 that also maps to chromosome 19p

Atteeq U. Rehman; Khitab Gul; Robert J. Morell; Kwanghyuk Lee; Zubair M. Ahmed; Saima Riazuddin; Mohsin Shahzad; Ateeq-ul Jaleel; Shaheen N. Khan; Saadullah Khan; Carmen C. Brewer; Wasim Ahmad; Suzanne M. Leal; Sheikh Riazuddin; Thomas B. Friedman

A missense mutation of Gipc3 was previously reported to cause age-related hearing loss in mice. Point mutations of human GIPC3 were found in two small families, but association with hearing loss was not statistically significant. Here, we describe one frameshift and six missense mutations in GIPC3 cosegregating with DFNB72 hearing loss in six large families that support statistically significant evidence for genetic linkage. However, GIPC3 is not the only nonsyndromic hearing impairment gene in this region; no GIPC3 mutations were found in a family cosegregating hearing loss with markers of chromosome 19p. Haplotype analysis excluded GIPC3 from the obligate linkage interval in this family and defined a novel locus spanning 4.08xa0Mb and 104 genes. This closely linked but distinct nonsyndromic hearing loss locus was designated DFNB81.


European Journal of Human Genetics | 2015

Challenges and solutions for gene identification in the presence of familial locus heterogeneity

Atteeq U. Rehman; Regie Lyn P. Santos-Cortez; Meghan C. Drummond; Mohsin Shahzad; Kwanghyuk Lee; Robert J. Morell; Muhammad Ansar; Abid Jan; Xin Wang; Abdul Aziz; Saima Riazuddin; Joshua D. Smith; Gao T. Wang; Zubair M. Ahmed; Khitab Gul; A. Eliot Shearer; Richard J.H. Smith; Jay Shendure; Michael J. Bamshad; Deborah A. Nickerson; John T. Hinnant; Shaheen N. Khan; Rachel Fisher; Wasim Ahmad; Karen H. Friderici; Sheikh Riazuddin; Thomas B. Friedman; Ellen Wilch; Suzanne M. Leal

Next-generation sequencing (NGS) of exomes and genomes has accelerated the identification of genes involved in Mendelian phenotypes. However, many NGS studies fall short of identifying causal variants, with estimates for success rates as low as 25% for uncovering the pathological variant underlying disease etiology. An important reason for such failures is familial locus heterogeneity, where within a single pedigree causal variants in two or more genes underlie Mendelian trait etiology. As examples of intra- and inter-sibship familial locus heterogeneity, we present 10 consanguineous Pakistani families segregating hearing impairment due to homozygous variants in two different hearing impairment genes and a European-American pedigree in which hearing impairment is caused by four variants in three different genes. We have identified 41 additional pedigrees with syndromic and nonsyndromic hearing impairment for which a single previously reported hearing impairment gene has been identified but only segregates with the phenotype in a subset of affected pedigree members. We estimate that locus heterogeneity occurs in 15.3% (95% confidence interval: 11.9%, 19.9%) of the families in our collection. We demonstrate novel approaches to apply linkage analysis and homozygosity mapping (for autosomal recessive consanguineous pedigrees), which can be used to detect locus heterogeneity using either NGS or SNP array data. Results from linkage analysis and homozygosity mapping can also be used to group sibships or individuals most likely to be segregating the same causal variants and thereby increase the success rate of gene identification.


Virology Journal | 2011

Inhibition of HCV 3a core gene through Silymarin and its fractions

Usman Ali Ashfaq; Tariq Javed; Sidra Rehman; Zafar Nawaz; Sheikh Riazuddin

AbstractHepatitis C is a major health problem affecting 270 million individuals in world including Pakistan. Current treatment regimen, interferon alpha and ribavirin only cure half of patients due to side effects and high cost.ResultsIn the present study Silybum marianum (Milk thistle) seeds were collected, extracted and analyzed against HCV 3a core gene by transiently transfecting the liver cells with HCV core plasmid. Our results demonstrated that Silymarin (SM) dose dependently inhibit the expression or function of HCV core gene at a non toxic concentration while the GAPDH remained constant. To identify the active ingredient, SM was fractioned by thin layer chromatography (TLC), column chromatography and HPLC. Purified fractions were tested for HCV core gene and western blotting results showed that two factions of SM (S1 and S2) inhibit HCV 3a core expression or function in liver cellsConclusionOur results suggest SM and its fractions (S1 and S2) inhibit HCV core gene of 3a genotype and combination of SM and its fractions with interferon will be a better option to treat HCV infection


Journal of Human Genetics | 2013

Phenotypic variability of CLDN14 mutations causing DFNB29 hearing loss in the Pakistani population

Zil-e-Huma Bashir; Noreen Latief; Inna A. Belyantseva; Farheena Iqbal; S. Amer Riazuddin; Shaheen N. Khan; Thomas B. Friedman; Sheikh Riazuddin; Saima Riazuddin

Human hereditary deafness at the DFNB29 locus on chromosome 21q22.1 is caused by recessive mutations of CLDN14, encoding claudin 14. This tight junction protein is tetramembrane spanning that localizes to the apical tight junctions of organ of Corti hair cells and in many other tissues. Typically, the DFNB29 phenotype is characterized by prelingual, bilateral, sensorineural hearing loss. The goal of this study was to define the identity and frequency of CLDN14 mutations and associated inner ear phenotypes in a cohort of 800 Pakistani families segregating deafness. Hearing loss in 15 multi-generational families was found to co-segregate with CLDN14-linked STR markers. The sequence of the six exons and regions flanking the introns of CLDN14 in these 15 families revealed five likely pathogenic alleles. Two are novel missense substitutions (p.Ser87Ile and p.Ala94Val), whereas p.Arg81His, p.Val85Asp and p.Met133ArgfsX23 have been reported previously. Haplotype analyses indicate that p.Val85Asp and p.Met133ArgfsX23 are founder mutations. The p.Val85Asp accounts for ∼67% of the mutant alleles of CLDN14 in our cohort. Combined with the previously reported data, CLDN14 mutations were identified in 18 of 800 Pakistani families (2.25; 95% CI, 1.4–3.5). Hearing loss in the affected individuals homozygous for CLDN14 mutations varied from moderate to profound. This phenotypic variability may be due to environmental factors (for example drug and noise exposure) and/or genetic modifiers.Human hereditary deafness at the DFNB29 locus on chromosome 21q22.1 is caused by recessive mutations of CLDN14, encoding claudin 14. This tight junction protein is tetramembrane spanning that localizes to the apical tight junctions of organ of Corti hair cells and in many other tissues. Typically, the DFNB29 phenotype is characterized by prelingual, bilateral, sensorineural hearing loss. The goal of this study was to define the identity and frequency of CLDN14 mutations and associated inner ear phenotypes in a cohort of 800 Pakistani families segregating deafness. Hearing loss in 15 multi-generational families was found to co-segregate with CLDN14-linked STR markers. The sequence of the six exons and regions flanking the introns of CLDN14 in these 15 families revealed five likely pathogenic alleles. Two are novel missense substitutions (p.Ser87Ile and p.Ala94Val), whereas p.Arg81His, p.Val85Asp and p.Met133ArgfsX23 have been reported previously. Haplotype analyses indicate that p.Val85Asp and p.Met133ArgfsX23 are founder mutations. The p.Val85Asp accounts for ~67% of the mutant alleles of CLDN14 in our cohort. Combined with the previously reported data, CLDN14 mutations were identified in 18 of 800 Pakistani families (2.25; 95% CI, 1.4-3.5). Hearing loss in the affected individuals homozygous for CLDN14 mutations varied from moderate to profound. This phenotypic variability may be due to environmental factors (for example drug and noise exposure) and/or genetic modifiers.

Collaboration


Dive into the Sheikh Riazuddin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wasim Ahmad

Quaid-i-Azam University

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Griffith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Edward R. Wilcox

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kwanghyuk Lee

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suzanne M. Leal

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge