Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shelagh Boyle is active.

Publication


Featured researches published by Shelagh Boyle.


Current Biology | 2002

Chromatin Motion Is Constrained by Association with Nuclear Compartments in Human Cells

Jonathan R Chubb; Shelagh Boyle; Paul E. Perry; Wendy A. Bickmore

BACKGROUND In comparison with many nuclear proteins, the movement of chromatin in nuclei appears to be generally constrained. These restrictions on motion are proposed to reflect the attachment of chromatin to immobile nuclear substructures. RESULTS To gain insight into the regulation of chromosome dynamics by nuclear architecture, we have followed the movements of different sites in the human genome in living cells. Here, we show that loci at nucleoli or the nuclear periphery are significantly less mobile than other, more nucleoplasmic loci. Disruption of nucleoli increases the mobility of nucleolar-associated loci. CONCLUSIONS This is the first report of distinct nuclear substructures constraining the movements of chromatin. These constraints reflect the physical attachment of chromatin to nuclear compartments or steric impairment caused by local ultrastructure. Our data suggest a role for the nucleolus and nuclear periphery in maintaining the three-dimensional organization of chromatin in the human nucleus.


PLOS Genetics | 2008

Recruitment to the nuclear periphery can alter expression of genes in human cells

Lee Finlan; Duncan Sproul; Inga Thomson; Shelagh Boyle; Elizabeth Kerr; Paul Perry; Bauke Ylstra; Jonathan R. Chubb; Wendy A. Bickmore

The spatial organisation of the genome in the nucleus has a role in the regulation of gene expression. In vertebrates, chromosomal regions with low gene-density are located close to the nuclear periphery. Correlations have also been made between the transcriptional state of some genes and their location near the nuclear periphery. However, a crucial issue is whether this level of nuclear organisation directly affects gene function, rather than merely reflecting it. To directly investigate whether proximity to the nuclear periphery can influence gene expression in mammalian cells, here we relocate specific human chromosomes to the nuclear periphery by tethering them to a protein of the inner nuclear membrane. We show that this can reversibly suppress the expression of some endogenous human genes located near the tethering sites, and even genes further away. However, the expression of many other genes is not detectably reduced and we show that location at the nuclear periphery is not incompatible with active transcription. The dampening of gene expression around the nuclear periphery is dependent on the activity of histone deacetylases. Our data show that the radial position within the nucleus can influence the expression of some, but not all, genes. This is compatible with the suggestion that re-localisation of genes relative to the peripheral zone of the nucleus could be used by metazoans to modulate the expression of selected genes during development and differentiation.


Cell | 2004

Chromatin Architecture of the Human Genome: Gene-Rich Domains Are Enriched in Open Chromatin Fibers

Nick Gilbert; Shelagh Boyle; Heike Fiegler; Kathryn Woodfine; Nigel P. Carter; Wendy A. Bickmore

We present an analysis of chromatin fiber structure across the human genome. Compact and open chromatin fiber structures were separated by sucrose sedimentation and their distributions analyzed by hybridization to metaphase chromosomes and genomic microarrays. We show that compact chromatin fibers originate from some sites of heterochromatin (C-bands), and G-bands (euchromatin). Open chromatin fibers correlate with regions of highest gene density, but not with gene expression since inactive genes can be in domains of open chromatin, and active genes in regions of low gene density can be embedded in compact chromatin fibers. Moreover, we show that chromatin fiber structure impacts on further levels of chromatin condensation. Regions of open chromatin fibers are cytologically decondensed and have a distinctive nuclear organization. We suggest that domains of open chromatin may create an environment that facilitates transcriptional activation and could provide an evolutionary constraint to maintain clusters of genes together along chromosomes.


Molecular Cell | 2010

Ring1B Compacts Chromatin Structure and Represses Gene Expression Independent of Histone Ubiquitination

Ragnhild Eskeland; Martin Leeb; Graeme Grimes; Clémence Kress; Shelagh Boyle; Duncan Sproul; Nick Gilbert; Yuhong Fan; Arthur I. Skoultchi; Anton Wutz; Wendy A. Bickmore

How polycomb group proteins repress gene expression in vivo is not known. While histone-modifying activities of the polycomb repressive complexes (PRCs) have been studied extensively, in vitro data have suggested a direct activity of the PRC1 complex in compacting chromatin. Here, we investigate higher-order chromatin compaction of polycomb targets in vivo. We show that PRCs are required to maintain a compact chromatin state at Hox loci in embryonic stem cells (ESCs). There is specific decompaction in the absence of PRC2 or PRC1. This is due to a PRC1-like complex, since decompaction occurs in Ring1B null cells that still have PRC2-mediated H3K27 methylation. Moreover, we show that the ability of Ring1B to restore a compact chromatin state and to repress Hox gene expression is not dependent on its histone ubiquitination activity. We suggest that Ring1B-mediated chromatin compaction acts to directly limit transcription in vivo.


Gastroenterology | 2003

Human cord blood-derived cells can differentiate into hepatocytes in the mouse liver with no evidence of cellular fusion

Philip N. Newsome; Ingolfur Johannessen; Shelagh Boyle; Evangelos Dalakas; Karen A. McAulay; Kay Samuel; Frances Rae; Lesley M. Forrester; Marc Turner; Peter C. Hayes; David J. Harrison; Wendy A. Bickmore; John Plevris

BACKGROUND & AIMS Studies have indicated that stem cells have unexpected plasticity and can differentiate down a multitude of nonhematopoietic cell lineages in rodents. Our aim was to identify whether human cord blood cells, which are a rich source of stem cells, would be able to differentiate into hepatocytes when infused into nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice. We also wanted to test whether such differentiated cells were the result of cellular fusion or true stem cell transdifferentiation. METHODS Unsorted mononuclear cell preparations of human cord blood were infused into sublethally irradiated NOD-SCID mice. After death, immunohistologic analysis of murine livers was performed using human specific hepatocyte, biliary, and endothelial markers. Fluorescent in situ hybridization (FISH) for mouse and human DNA was also performed. RESULTS We show that human cord blood cells have the ability to engraft into NOD-SCID liver and become mature hepatocytes. We were unable to identify any biliary or endothelial differentiation. Furthermore, we do not detect any evidence of cell fusion in any of the human cells found in the mouse liver, suggesting that human cord blood cells are capable of true transdifferentiation into hepatocytes in vivo. CONCLUSIONS We conclude that hepatocytes can derive from human cord blood cells when infused into NOD-SCID mice in the absence of fusion. The demonstration that human stem cell differentiation can occur in this murine model permits comprehensive study of human stem cell plasticity in vivo.


Current Biology | 2000

Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts

Joanna M. Bridger; Shelagh Boyle; Ian R. Kill; Wendy A. Bickmore

Spatial organisation of the genome within the nucleus can play a role in maintaining the expressed or silent state of some genes [1]. There are distinct addresses for specific chromosomes, which have different functional characteristics, within the nuclei of dividing populations of human cells [2]. Here, we demonstrate that this level of nuclear architecture is altered in cells that have become either quiescent or senescent. Upon cell cycle exit, a gene-poor human chromosome moves from a location at the nuclear periphery to a more internal site in the nucleus, and changes its associations with nuclear substructures. The chromosome moves back toward the edge of the nucleus at a distinctive time after re-entry into the cell cycle. There is a 2-4 hour period at the beginning of G1 when the spatial organisation of these human chromosomes is established. Lastly, these experiments provide evidence that temporal control of DNA replication can be independent of spatial chromosome organisation. We conclude that the sub-nuclear organisation of chromosomes in quiescent or senescent mammalian somatic cells is fundamentally different from that in proliferating cells and that the spatial organisation of the genome is plastic.


Cell | 2012

Enzymatic Removal of Ribonucleotides from DNA Is Essential for Mammalian Genome Integrity and Development

Martin A. M. Reijns; Björn Rabe; Rachel E. Rigby; Pleasantine Mill; Katy R. Astell; Laura Lettice; Shelagh Boyle; Andrea Leitch; Margaret Keighren; Fiona Kilanowski; Paul S. Devenney; David Sexton; Graeme Grimes; Ian J. Holt; Robert E. Hill; Martin S. Taylor; Kirstie Lawson; Julia R. Dorin; Andrew P. Jackson

Summary The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells.


Genes & Development | 2014

Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization

Iain Williamson; Soizik Berlivet; Ragnhild Eskeland; Shelagh Boyle; Robert S. Illingworth; Denis Paquette; Jos ee Dostie; Wendy A. Bickmore

Although important for gene regulation, most studies of genome organization use either fluorescence in situ hybridization (FISH) or chromosome conformation capture (3C) methods. FISH directly visualizes the spatial relationship of sequences but is usually applied to a few loci at a time. The frequency at which sequences are ligated together by formaldehyde cross-linking can be measured genome-wide by 3C methods, with higher frequencies thought to reflect shorter distances. FISH and 3C should therefore give the same views of genome organization, but this has not been tested extensively. We investigated the murine HoxD locus with 3C carbon copy (5C) and FISH in different developmental and activity states and in the presence or absence of epigenetic regulators. We identified situations in which the two data sets are concordant but found other conditions under which chromatin topographies extrapolated from 5C or FISH data are not compatible. We suggest that products captured by 3C do not always reflect spatial proximity, with ligation occurring between sequences located hundreds of nanometers apart, influenced by nuclear environment and chromatin composition. We conclude that results obtained at high resolution with either 3C methods or FISH alone must be interpreted with caution and that views about genome organization should be validated by independent methods.


Science | 2014

Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells.

Pierre Therizols; Robert S. Illingworth; Celine Courilleau; Shelagh Boyle; Andrew J. Wood; Wendy A. Bickmore

During differentiation, thousands of genes are repositioned toward or away from the nuclear envelope. These movements correlate with changes in transcription and replication timing. Using synthetic (TALE) transcription factors, we found that transcriptional activation of endogenous genes by a viral trans-activator is sufficient to induce gene repositioning toward the nuclear interior in embryonic stem cells. However, gene relocation was also induced by recruitment of an acidic peptide that decondenses chromatin without affecting transcription, indicating that nuclear reorganization is driven by chromatin remodeling rather than transcription. We identified an epigenetic inheritance of chromatin decondensation that maintained central nuclear positioning through mitosis even after the TALE transcription factor was lost. Our results also demonstrate that transcriptional activation, but not chromatin decondensation, is sufficient to change replication timing. The position of a gene in the cell nucleus is dictated by the compaction state of its chromatin wrapper. Unpacking for travel to the nuclear interior The position of a gene within the cell nucleus is correlated with its activity. Those near the nuclear periphery are generally repressed, whereas those in the center are (or will be) active. It is not clear whether this relocalization is a cause or a consequence of gene regulation. Therizols et al. found that transcriptional activation or simply chromatin decondensation both drove the relocation of genes to the interior of the nucleus. The nuclear position was maintained in daughter cells, suggesting that the cell has an epigenetic memory of the genes position within the nucleus. Science, this issue p. 1238


The EMBO Journal | 2003

Formation of facultative heterochromatin in the absence of HP1

Nick Gilbert; Shelagh Boyle; Heidi G. Sutherland; Jose I. de las Heras; James Allan; Thomas Jenuwein; Wendy A. Bickmore

Facultative heterochromatin is a cytological manifestation of epigenetic mechanisms that regulate gene expression. Constitutive heterochromatin is marked by distinctive histone H3 methylation and the presence of HP1 proteins, but the chromatin modifications of facultative heterochromatin are less clear. We have examined histone modifications and HP1 in the facultative heterochromatin of nucleated erythrocytes and show that mouse and chicken erythrocytes have different mechanisms of heterochromatin formation. Mouse embryonic erythrocytes have abundant HP1, increased tri‐methylation of H3 at K9 and loss of H3 tri‐methylation at K27. In contrast, we show that HP1 proteins are lost during the differentiation of chicken erythrocytes, and that H3 tri‐methylation at both K9 and K27 is reduced. This coincides with the appearance of the variant linker histone H5. HP1s are also absent from erythrocytes of Xenopus and zebrafish. Our data show that in the same cell lineage there are different mechanisms for forming facultative heterochromatin in vertebrates. To our knowledge, this is the first report of cell types that lack HP1s and that have gross changes in the levels of histone modifications.

Collaboration


Dive into the Shelagh Boyle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nick Gilbert

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duncan Sproul

Western General Hospital

View shared research outputs
Top Co-Authors

Avatar

Judy Fantes

Western General Hospital

View shared research outputs
Top Co-Authors

Avatar

Paul Perry

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge