Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shelagh D. Campbell is active.

Publication


Featured researches published by Shelagh D. Campbell.


Current Biology | 1997

The Drosophila grapes gene is related to checkpoint gene chk1/rad27 and is required for late syncytial division fidelity

Patrick Fogarty; Shelagh D. Campbell; Robin Abu-Shumays; Brigitte de Saint Phalle; Kristina R. Yu; Geoffrey L. Uy; Michael L. Goldberg; William Sullivan

BACKGROUND Cell cycle checkpoints maintain the fidelity of the somatic cell cycle by ensuring that one step in the cell cycle is not initiated until a previous step has been completed. The extent to which cell cycle checkpoints play a role in the initial rapid embryonic divisions of higher eukaryotes is unclear. The initial syncytial divisions of Drosophila embryogenesis provide an excellent opportunity to address this issue as they are amenable to both genetic and cellular analysis. In order to study the relevance of cell cycle checkpoints in early Drosophila embryogenesis, we have characterized the maternal-effect grapes (grp) mutation, which may affect feedback control during early syncytial divisions. RESULTS The Drosophila grp gene encodes a predicted serine/threonine kinase and has significant homology to chk1/rad27, a gene required for a DNA damage checkpoint in Schizosaccharomyces pombe. Relative to normal embryos, embryos derived from grp-mutant mothers exhibit elevated levels of DNA damage. During nuclear cycles 12 and 13, alignment of the chromosomes on the metaphase plate was disrupted in grp-derived embryos, and the embryos underwent a progression of cytological events that were indistinguishable from those observed in normal syncytial embryos exposed to X-irradiation. The mutant embryos also failed to progress through a regulatory transition in Cdc2 activity that normally occurs during interphase of nuclear cycle 14. CONCLUSION We propose that the primary defect in grp-derived embryos is a failure to replicate or repair DNA completely before mitotic entry during the late syncytial divisions. This suggests that wild-type grp functions in a developmentally regulated DNA replication/damage checkpoint operating during the late syncytial divisions. These results are discussed with respect to the proposed function of the chk1/rad27 gene.


Current Biology | 2004

ATM is required for telomere maintenance and chromosome stability during Drosophila development.

Elizabeth Silva; Stanley Tiong; Michael Pedersen; Ellen Homola; Anne Royou; Barbara Fasulo; Giorgia Siriaco; Shelagh D. Campbell

ATM is a large, multifunctional protein kinase that regulates responses required for surviving DNA damage: including DNA repair, apoptosis, and cell cycle checkpoints. Here, we show that Drosophila ATM function is essential for normal adult development. Extensive, inappropriate apoptosis occurs in proliferating atm mutant tissues, and in clonally derived atm mutant embryos, frequent mitotic defects were seen. At a cellular level, spontaneous telomere fusions and other chromosomal abnormalities are common in atm larval neuroblasts, suggesting a conserved and essential role for dATM in the maintenance of normal telomeres and chromosome stability. Evidence from other systems supports the idea that DNA double-strand break (DSB) repair functions of ATM kinases promote telomere maintenance by inhibition of illegitimate recombination or fusion events between the legitimate ends of chromosomes and spontaneous DSBs. Drosophila will be an excellent model system for investigating how these ATM-dependent chromosome structural maintenance functions are deployed during development. Because neurons appear to be particularly sensitive to loss of ATM in both flies and humans, this system should be particularly useful for identifying cell-specific factors that influence sensitivity to loss of dATM and are relevant for understanding the human disease, ataxia-telangiectasia.


Journal of Cell Biology | 2011

Drosophila ATM and ATR have distinct activities in the regulation of meiotic DNA damage and repair

Eric F. Joyce; Michael Pedersen; Stanley Tiong; Sanese K. White-Brown; Anshu Paul; Shelagh D. Campbell; Kim S. McKim

ATM and ATR display distinct activities in meiotic DSB repair, such that ATM functions in DNA damage repair and negative feedback control over programmed double strand breaks, whereas ATR is required for checkpoint activity.


Current Biology | 2004

Drosophila Wee1 Kinase Regulates Cdk1 and Mitotic Entry during Embryogenesis

Jason Stumpff; Tod Duncan; Ellen Homola; Shelagh D. Campbell; Tin Tin Su

Cyclin-dependent kinases (Cdks) are the central regulators of the cell division cycle. Inhibitors of Cdks ensure proper coordination of cell cycle events and help regulate cell proliferation in the context of tissues and organs. Wee1 homologs phosphorylate a conserved tyrosine to inhibit the mitotic cyclin-dependent kinase Cdk1. Loss of Wee1 function in fission or budding yeast causes premature entry into mitosis. The importance of metazoan Wee1 homologs for timing mitosis, however, has been demonstrated only in Xenopus egg extracts and via ectopic Cdk1 activation . Here, we report that Drosophila Wee1 (dWee1) regulates Cdk1 via phosphorylation of tyrosine 15 and times mitotic entry during the cortical nuclear cycles of syncytial blastoderm embryos, which lack gap phases. Loss of maternal dwee1 leads to premature entry into mitosis, mitotic spindle defects, chromosome condensation problems, and a Chk2-dependent block of subsequent development, and then embryonic lethality. These findings modify previous models about cell cycle regulation in syncytial embryos and demonstrate that Wee1 kinases can regulate mitotic entry in vivo during metazoan development even in cycles that lack a G2 phase.


Current Biology | 1999

Drosophila grapes/CHK1 mutants are defective in cyclin proteolysis and coordination of mitotic events

Tin Tin Su; Shelagh D. Campbell; Patrick H. O'Farrell

The Drosophila grapes (grp) gene, which encodes a homolog of the Schizosaccharomyces pombe Chk1 kinase, provides a cell-cycle checkpoint that delays mitosis in response to inhibition of DNA replication [1]. Grp is also required in the undisturbed early embryonic cycles: in its absence, mitotic abnormalities appear in cycle 12 and chromosomes fail to fully separate in subsequent cycles [2] [3]. In other systems, Chk1 kinase phosphorylates and suppresses the activity of Cdc25 phosphatase: the resulting failure to remove inhibitory phosphate from cyclin-dependent kinase 1 (Cdk1) prevents entry into mitosis [4] [5]. Because in Drosophila embryos Cdk1 lacks inhibitory phosphate during cycles 11-13 [6], it is not clear that known actions of Grp/Chk1 suffice in these cycles. We found that the loss of grp compromised cyclin A proteolysis and delayed mitotic disjunction of sister chromosomes. These defects occurred before previously reported grp phenotypes. We conclude that Grp activates cyclin A degradation, and functions to time the disjunction of chromosomes in the early embryo. As cyclin A destruction is required for sister chromosome separation [7], a failure in Grp-promoted cyclin destruction can also explain the mitotic phenotype. The mitotic failure described previously for cycle 12 grp embryos might be a more severe form of the phenotypes that we describe in earlier embryos and we suggest that the underlying defect is reduced degradation of cyclin A.


Molecular Biology of the Cell | 2012

Chk1 and Wee1 kinases coordinate DNA replication, chromosome condensation, and anaphase entry

Barbara Fasulo; Carol Koyama; Kristina R. Yu; Ellen Homola; Tao S. Hsieh; Shelagh D. Campbell; William Sullivan

New chromosome condensation checkpoints are identified. S-phase and topoisomerase inhibitors delay chromosome condensation. These delays require chk1 and wee1. Inhibitors causing defects in chromosome condensation/congression on the metaphase plate delay anaphase entry. wee1 and not the spindle assembly checkpoint mediates the delay.


PLOS ONE | 2013

The Smc5/Smc6/MAGE Complex Confers Resistance to Caffeine and Genotoxic Stress in Drosophila melanogaster

Xiao Li; Ran Zhuo; Stanley Tiong; Francesca Di Cara; Kirst King-Jones; Sarah C. Hughes; Shelagh D. Campbell; Rachel Wevrick

The SMC5/6 protein complex consists of the Smc5, Smc6 and Non-Smc-Element (Nse) proteins and is important for genome stability in many species. To identify novel components in the DNA repair pathway, we carried out a genetic screen to identify mutations that confer reduced resistance to the genotoxic effects of caffeine, which inhibits the ATM and ATR DNA damage response proteins. This approach identified inactivating mutations in CG5524 and MAGE, homologs of genes encoding Smc6 and Nse3 in yeasts. The fact that Smc5 mutants are also caffeine-sensitive and that Mage physically interacts with Drosophila homologs of Nse proteins suggests that the structure of the Smc5/6 complex is conserved in Drosophila. Although Smc5/6 proteins are required for viability in S. cerevisiae, they are not essential under normal circumstances in Drosophila. However, flies carrying mutations in Smc5, Smc6 and MAGE are hypersensitive to genotoxic agents such as ionizing radiation, camptothecin, hydroxyurea and MMS, consistent with the Smc5/6 complex serving a conserved role in genome stability. We also show that mutant flies are not compromised for pre-mitotic cell cycle checkpoint responses. Rather, caffeine-induced apoptosis in these mutants is exacerbated by inhibition of ATM or ATR checkpoint kinases but suppressed by Rad51 depletion, suggesting a functional interaction involving homologous DNA repair pathways that deserves further scrutiny. Our insights into the SMC5/6 complex provide new challenges for understanding the role of this enigmatic chromatin factor in multi-cellular organisms.


Aging Cell | 2012

A neuroprotective role for the DNA damage checkpoint in tauopathy.

Vikram Khurana; Paola Merlo; Brian DuBoff; Tudor A. Fulga; Katherine A. Sharp; Shelagh D. Campbell; Jürgen Götz; Mel B. Feany

ATM and p53, effectors of the DNA damage checkpoint, are generally considered pro‐apoptotic in neurons. We show that DNA damage and checkpoint activation occurs in postmitotic neurons in animal models of tauopathy, neurodegenerative disorders that include Alzheimer’s disease. Surprisingly, checkpoint attenuation potently increases neurodegeneration through aberrant cell cycle re‐entry of postmitotic neurons. These data suggest an unexpected neuroprotective role for the DNA damage checkpoint in tauopathies.


Genetics | 2008

Drosophila Myt1 Is the Major Cdk1 Inhibitory Kinase for Wing Imaginal Disc Development

Zhigang Jin; Ellen Homola; Stanley Tiong; Shelagh D. Campbell

Mitosis is triggered by activation of Cdk1, a cyclin-dependent kinase. Conserved checkpoint mechanisms normally inhibit Cdk1 by inhibitory phosphorylation during interphase, ensuring that DNA replication and repair is completed before cells begin mitosis. In metazoans, this regulatory mechanism is also used to coordinate cell division with critical developmental processes, such as cell invagination. Two types of Cdk1 inhibitory kinases have been found in metazoans. They differ in subcellular localization and Cdk1 target-site specificity: one (Wee1) being nuclear and the other (Myt1), membrane-associated and cytoplasmic. Drosophila has one representative of each: dMyt1 and dWee1. Although dWee1 and dMyt1 are not essential for zygotic viability, loss of both resulted in synthetic lethality, indicating that they are partially functionally redundant. Bristle defects in myt1 mutant adult flies prompted a phenotypic analysis that revealed cell-cycle defects, ectopic apoptosis, and abnormal responses to ionizing radiation in the myt1 mutant imaginal wing discs that give rise to these mechanosensory organs. Cdk1 inhibitory phosphorylation was also aberrant in these myt1 mutant imaginal wing discs, indicating that dMyt1 serves Cdk1 regulatory functions that are important both for normal cell-cycle progression and for coordinating mitosis with critical developmental processes.


Development | 2005

Drosophila Myt1 is a Cdk1 inhibitory kinase that regulates multiple aspects of cell cycle behavior during gametogenesis

Zhigang Jin; Ellen Homola; Philip Goldbach; YunHee Choi; Julie A. Brill; Shelagh D. Campbell

The metazoan Wee1-like kinases Wee1 and Myt1 regulate the essential mitotic regulator Cdk1 by inhibitory phosphorylation. This regulatory mechanism, which prevents Cdk1 from triggering premature mitotic events, is also induced during the DNA damage response and used to coordinate cell proliferation with crucial developmental events. Despite the previously demonstrated role for Myt1 regulation of Cdk1 during meiosis, relatively little is known of how Myt1 functions at other developmental stages. To address this issue, we have undertaken a functional analysis of Drosophila Myt1 that has revealed novel developmental roles for this conserved cell cycle regulator during gametogenesis. Notably, more proliferating cells were observed in myt1 mutant testes and ovaries than controls. This can partly be attributed to ectopic division of germline-associated somatic cells in myt1 mutants, suggesting that Myt1 serves a role in regulating exit from the cell cycle. Moreover, mitotic index measurements suggested that germline stem cells proliferate more rapidly, in myt1 mutant females. In addition, male myt1 germline cells occasionally undergo an extra mitotic division, resulting in meiotic cysts with twice the normal numbers of cells. Based on these observations, we propose that Myt1 serves unique Cdk1 regulatory functions required for efficient coupling of cell differentiation with cell cycle progression.

Collaboration


Dive into the Shelagh D. Campbell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tin Tin Su

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth Silva

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge