Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shelby Kutty is active.

Publication


Featured researches published by Shelby Kutty.


Journal of Cardiovascular Magnetic Resonance | 2012

Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking

Geraint Morton; Andreas Schuster; Roy Jogiya; Shelby Kutty; Philipp Beerbaum; Eike Nagel

BackgroundCardiovascular magnetic resonance myocardial feature tracking (CMR-FT) is a recently described method of post processing routine cine acquisitions which aims to provide quantitative measurements of circumferentially and radially directed ventricular wall strain. Inter-study reproducibility is important for serial assessments however has not been defined for CMR-FT.Methods16 healthy volunteers were imaged 3 times within a single day. The first examination was performed at 0900 after fasting and was immediately followed by the second. The third, non-fasting scan, was performed at 1400.CMR-FT measures of segmental and global strain parameters were calculated. Left ventricular (LV) circumferential and radial strain were determined in the short axis orientation (EccSAX and ErrSAX respectively). LV and right ventricular longitudinal strain and LV radial strain were determined from the 4-chamber orientation (EllLV, EllRV, and ErrLAX respectively). LV volumes and function were also analysed.Inter-study reproducibility and study sample sizes required to demonstrate 5% changes in absolute strain were determined by comparison of the first and second exams. The third exam was used to determine whether diurnal variation affected reproducibility.ResultsCMR-FT strain analysis inter-study reproducibility was variable. Global strain assessment was more reproducible than segmental analysis. Overall EccSAX was the most reproducible measure of strain: coefficient of variation (CV) 38% and 20.3% and intraclass correlation coefficient (ICC) 0.68 (0.55-0.78) and 0.7 (0.32-0.89) for segmental and global analysis respectively. The least reproducible segmental measure was EllRV: CV 60% and ICC 0.56 (0.41-0.69) whilst the least reproducible global measure was ErrLAX: CV 33.3% and ICC 0.44 (0–0.77). Variable reproducibility was also reflected in the calculated sample sizes, which ranged from 11 (global EccSAX) to 156 subjects (segmental EllRV). The reproducibility of LV volumes and function was excellent. There was no diurnal variation in global strain or LV volumetric measurements.ConclusionsInter-study reproducibility of CMR-FT varied between different parameters, as summarized above and was better for global rather than segmental analysis. It was not measurably affected by diurnal variation. CMR-FT may have potential for quantitative wall motion analysis with applications in patient management and clinical trials. However, inter-study reproducibility was relatively poor for segmental and long axis analyses of strain, which have yet to be validated, and may benefit from further development.


Journal of The American Society of Echocardiography | 2012

Changes in left ventricular longitudinal strain with anthracycline chemotherapy in adolescents precede subsequent decreased left ventricular ejection fraction.

Joseph T. Poterucha; Shelby Kutty; Rebecca K. Lindquist; Ling Li

BACKGROUND Pediatric cancer survivors who have been exposed to anthracycline (ANT) chemotherapy are an ever increasing population at risk for premature cardiac disease. Studies have shown that ANT is associated with impaired left ventricular (LV) myocardial deformation, but this has not been shown to be associated with traditional echocardiographic measures of LV systolic dysfunction. The aim of this study was to test the hypothesis that changes in LV longitudinal peak systolic strain (LPSS) would correlate with parameters of LV systolic dysfunction. METHODS This study included 19 prospectively enrolled pediatric patients receiving ANT (mean dose, 296 ± 103 mg/m(2)) and 19 controls matched for age, gender, and body surface area. For ANT patients, echocardiography was performed at baseline, mid, and final treatment points (0, 4, and 8 months). Standard echocardiographic parameters and two-dimensional speckle tracking-derived longitudinal strain parameters were obtained and compared with baseline measurements in controls. Associations between changes in LV global LPSS and standard echocardiographic indices were explored. RESULTS Within the ANT group, the change in LV global LPSS showed a significant decrease compared with baseline at 4 months (8.7 ± 0.2%, P = .033) and 8 months (9.2 ± 0.3%, P = .015), while the percentage change in ejection fraction (EF) showed a statistically significant decrease at 8 months (4.3 ± 0.1%, P = .044). LV global LPSS was decreased in the ANT group compared with controls at 4 months (18.1 ± 2.5% vs 20.5 ± 1.5%, P = .011) and 8 months (18.1 ± 2.8%, P = .032). Segmental changes in mid and apical LV LPSS average were significantly correlated with change in EF (mid: r = -0.49, β = -0.645, P = 0.039; apical: r = -0.48, β = -0.4126, P = .046). CONCLUSIONS In adolescents who receive ANT therapy, changes in two-dimensional LV global LPSS precede decreases in EF, and segmental changes in mid and apical LV LPSS suggest an increased likelihood that depressed LV EF will be observed later in follow-up. Two-dimensional speckle tracking-derived LV LPSS is potentially useful in the serial clinical monitoring of ANT cardiotoxicity.


Journal of Cardiovascular Magnetic Resonance | 2011

Cardiovascular magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress

Andreas Schuster; Shelby Kutty; Asif Padiyath; Victoria Parish; Paul Gribben; David A. Danford; Marcus R. Makowski; Boris Bigalke; Philipp Beerbaum; Eike Nagel

BackgroundDobutamine stress cardiovascular magnetic resonance (DS-CMR) is an established tool to assess hibernating myocardium and ischemia. Analysis is typically based on visual assessment with considerable operator dependency. CMR myocardial feature tracking (CMR-FT) is a recently introduced technique for tissue voxel motion tracking on standard steady-state free precession (SSFP) images to derive circumferential and radial myocardial mechanics.We sought to determine the feasibility and reproducibility of CMR-FT for quantitative wall motion assessment during intermediate dose DS-CMR.Methods10 healthy subjects were studied at 1.5 Tesla. Myocardial strain parameters were derived from SSFP cine images using dedicated CMR-FT software (Diogenes MRI prototype; Tomtec; Germany). Right ventricular (RV) and left ventricular (LV) longitudinal strain (EllRV and EllLV) and LV long-axis radial strain (ErrLAX) were derived from a 4-chamber view at rest. LV short-axis circumferential strain (EccSAX) and ErrSAX; LV ejection fraction (EF) and volumes were analyzed at rest and during dobutamine stress (10 and 20 μg · kg-1· min-1).ResultsIn all volunteers strain parameters could be derived from the SSFP images at rest and stress. EccSAX values showed significantly increased contraction with DSMR (rest: -24.1 ± 6.7; 10 μg: -32.7 ± 11.4; 20 μg: -39.2 ± 15.2; p < 0.05). ErrSAX increased significantly with dobutamine (rest: 19.6 ± 14.6; 10 μg: 31.8 ± 20.9; 20 μg: 42.4 ± 25.5; p < 0.05). In parallel with these changes; EF increased significantly with dobutamine (rest: 56.9 ± 4.4%; 10 μg: 70.7 ± 8.1; 20 μg: 76.8 ± 4.6; p < 0.05). Observer variability was best for LV circumferential strain (EccSAX ) and worst for RV longitudinal strain (EllRV) as determined by 95% confidence intervals of the difference.ConclusionsCMR-FT reliably detects quantitative wall motion and strain derived from SSFP cine imaging that corresponds to inotropic stimulation. The current implementation may need improvement to reduce observer-induced variance. Within a given CMR lab; this novel technique holds promise of easy and fast quantification of wall mechanics and strain.


Jacc-cardiovascular Imaging | 2011

Novel insights into RV adaptation and function in hypoplastic left heart syndrome between the first 2 stages of surgical palliation.

Nee Scze Khoo; Jeffrey F. Smallhorn; Sachie Kaneko; Kimberly Myers; Shelby Kutty; Edythe B. Tham

OBJECTIVES This study sought to examine the changes in ventricular function of hypoplastic left heart syndrome (HLHS) between the first 2 stages of surgical palliation. BACKGROUND The mortality risk between first and second stages of surgical palliation in HLHS remains high. Right ventricular (RV) dysfunction predicts mortality. Postulated mechanisms include a maladaptive contraction pattern, myocardial ischemia, or contraction asynchrony. Speckle tracking imaging allows accurate measurement of myocardial deformation without geometric assumptions. METHODS Prospective echocardiography pre-Norwood and pre-bidirectional cavopulmonary anastomosis (BCPA) examinations were performed in 20 HLHS patients, with comparisons made between stages. Measurements of ventricular function included: longitudinal/circumferential strain ratio, reflecting changes in contraction pattern; post-systolic strain index, a potential marker of myocardial ischemia; and mechanical dyssynchrony index. Relationships between echocardiographic variables and magnetic resonance imaging RV parameters before BCPA were examined. RESULTS Before BCPA, myocardial contractility estimated by isovolumic acceleration and strain rate was reduced, paralleled by an increased in post-systolic strain index (p < 0.01). Right ventricular longitudinal/circumferential strain ratio decreased, becoming similar to a left ventricle-like contraction pattern, and this correlated with decreased mechanical dyssynchrony index (r = 0.65, p < 0.01), magnetic resonance imaging RV end-diastolic volume (r = 0.65, p < 0.05) and mass (r = 0.71, p < 0.01). Ventricular strain (r = -0.72, p < 0.01), strain rate (r = -0.85, p < 0.001), and mechanical dyssynchrony index (r = -0.73, p < 0.01) correlated linearly with magnetic resonance imaging-derived RV ejection fraction. CONCLUSIONS Reduced RV contractility occurred before BCPA. RV with a left ventricle-like contraction pattern was associated with improved contraction synchrony as well as a reduction in RV size and mass in HLHS. The finding of increased post-systolic strain index before BCPA is novel and its potential link with myocardial ischemia warrants further investigation. RV strain, strain rate, and contraction synchrony measured by speckle tracking imaging correlated closely with ventricular function and might be useful for monitoring ventricular function in HLHS.


Journal of the American College of Cardiology | 2012

Patent Foramen Ovale: The Known and the To Be Known

Shelby Kutty; Partho P. Sengupta; Bijoy K. Khandheria

The patent foramen ovale (PFO) is a normal interatrial communication during fetal life that persists after birth in approximately 1 of every 4 adults. PFO is a potential route for embolic transit from the systemic venous circulation to the brain. Though there is compelling circumstantial evidence implicating PFO, the precise role of PFO in the pathogenesis of cryptogenic stroke is not yet established. Several randomized trials of transcatheter PFO closure versus medical management are ongoing. Results of these trials may improve our ability to select the best treatment for individual patients. Further well-designed studies are necessary to address several unresolved issues related to PFO stroke and PFO migraine pathophysiology, and to identify the patients who would most likely benefit from PFO closure. The purpose of this review is to summarize contemporary understanding, discuss current treatments, and explore some of the knowledge gaps pertaining to the clinical significance of PFO.


Clinical Radiology | 2015

Cardiovascular magnetic resonance feature-tracking assessment of myocardial mechanics: Intervendor agreement and considerations regarding reproducibility

Andreas Schuster; Vera Stahnke; Christina Unterberg-Buchwald; Johannes Tammo Kowallick; Pablo Lamata; Michael Steinmetz; Shelby Kutty; Martin Fasshauer; Wieland Staab; Jan M Sohns; B. Bigalke; Christian Ritter; Gerd Hasenfuß; Philipp Beerbaum; Joachim Lotz

Aim To assess intervendor agreement of cardiovascular magnetic resonance feature tracking (CMR-FT) and to study the impact of repeated measures on reproducibility. Materials and methods Ten healthy volunteers underwent cine imaging in short-axis orientation at rest and with dobutamine stimulation (10 and 20 μg/kg/min). All images were analysed three times using two types of software (TomTec, Unterschleissheim, Germany and Circle, cvi42, Calgary, Canada) to assess global left ventricular circumferential (Ecc) and radial (Err) strains and torsion. Differences in intra- and interobserver variability within and between software types were assessed based on single and averaged measurements (two and three repetitions with subsequent averaging of results, respectively) as determined by Bland–Altman analysis, intraclass correlation coefficients (ICC), and coefficient of variation (CoV). Results Myocardial strains and torsion significantly increased on dobutamine stimulation with both types of software (p<0.05). Resting Ecc and torsion as well as Ecc values during dobutamine stimulation were lower measured with Circle (p<0.05). Intra- and interobserver variability between software types was lowest for Ecc (ICC 0.81 [0.63–0.91], 0.87 [0.72–0.94] and CoV 12.47% and 14.3%, respectively) irrespective of the number of analysis repetitions. Err and torsion showed higher variability that markedly improved for torsion with repeated analyses and to a lesser extent for Err. On an intravendor level TomTec showed better reproducibility for Ecc and torsion and Circle for Err. Conclusions CMR-FT strain and torsion measurements are subject to considerable intervendor variability, which can be reduced using three analysis repetitions. For both vendors, Ecc qualifies as the most robust parameter with the best agreement, albeit lower Ecc values obtained using Circle, and warrants further investigation of incremental clinical merit.


Circulation-cardiovascular Imaging | 2016

Cardiovascular Magnetic Resonance Myocardial Feature Tracking: Concepts and Clinical Applications

Andreas Schuster; Kan N. Hor; Johannes Tammo Kowallick; Philipp Beerbaum; Shelby Kutty

Heart failure–induced cardiovascular morbidity and mortality constitute a major health problem worldwide and result from diverse pathogeneses, including coronary artery disease, nonischemic cardiomyopathies, and arrhythmias. Assessment of cardiovascular performance is important for early diagnosis and accurate management of patients at risk of heart failure. During the past decade, cardiovascular magnetic resonance myocardial feature tracking has emerged as a useful tool for the quantitative evaluation of cardiovascular function. The method allows quantification of biatrial and biventricular mechanics from measures of deformation: strain, torsion, and dyssynchrony. The purpose of this article is to review the basic principles, clinical applications, accuracy, and reproducibility of cardiovascular magnetic resonance myocardial feature tracking, highlighting the prognostic implications. It will also provide an outlook on how this field might evolve in the future.


Journal of Cardiovascular Magnetic Resonance | 2014

Quantification of left atrial strain and strain rate using Cardiovascular Magnetic Resonance myocardial feature tracking: a feasibility study

Johannes Tammo Kowallick; Shelby Kutty; Frank T. Edelmann; Amedeo Chiribiri; Adriana Villa; Michael Steinmetz; Jan M Sohns; Wieland Staab; Nuno Bettencourt; Christina Unterberg-Buchwald; Gerd Hasenfuß; Joachim Lotz; Andreas Schuster

BackgroundCardiovascular Magnetic Resonance myocardial feature tracking (CMR-FT) is a quantitative technique tracking tissue voxel motion on standard steady-state free precession (SSFP) cine images to assess ventricular myocardial deformation. The importance of left atrial (LA) deformation assessment is increasingly recognized and can be assessed with echocardiographic speckle tracking. However atrial deformation quantification has never previously been demonstrated with CMR. We sought to determine the feasibility and reproducibility of CMR-FT for quantitative derivation of LA strain and strain rate (SR) myocardial mechanics.Methods10 healthy volunteers, 10 patients with hypertrophic cardiomyopathy (HCM) and 10 patients with heart failure and preserved ejection fraction (HFpEF) were studied at 1.5 Tesla. LA longitudinal strain and SR parameters were derived from SSFP cine images using dedicated CMR-FT software (2D CPA MR, TomTec, Germany). LA performance was analyzed using 4- and 2-chamber views including LA reservoir function (total strain [εs], peak positive SR [SRs]), LA conduit function (passive strain [εe], peak early negative SR [SRe]) and LA booster pump function (active strain [εa], late peak negative SR [SRa]).ResultsIn all subjects LA strain and SR parameters could be derived from SSFP images. There was impaired LA reservoir function in HCM and HFpEF (εs [%]: HCM 22.1 ± 5.5, HFpEF 16.3 ± 5.8, Controls 29.1 ± 5.3, p < 0.01; SRs [s-1]: HCM 0.9 ± 0.2, HFpEF 0.8 ± 0.3, Controls 1.1 ± 0.2, p < 0.05) and impaired LA conduit function as compared to healthy controls (εe [%]: HCM 10.4 ± 3.9, HFpEF 11.9 ± 4.0, Controls 21.3 ± 5.1, p < 0.001; SRe [s-1]: HCM -0.5 ± 0.2, HFpEF -0.6 ± 0.1, Controls -1.0 ± 0.3, p < 0.01). LA booster pump function was increased in HCM while decreased in HFpEF (εa [%]: HCM 11.7 ± 4.0, HFpEF 4.5 ± 2.9, Controls 7.8 ± 2.5, p < 0.01; SRa [s-1]: HCM -1.2 ± 0.4, HFpEF -0.5 ± 0.2, Controls -0.9 ± 0.3, p < 0.01). Observer variability was excellent for all strain and SR parameters on an intra- and inter-observer level as determined by Bland-Altman, coefficient of variation and intraclass correlation coefficient analyses.ConclusionsCMR-FT based atrial performance analysis reliably quantifies LA longitudinal strain and SR from standard SSFP cine images and discriminates between patients with impaired left ventricular relaxation and healthy controls. CMR-FT derived atrial deformation quantification seems a promising novel approach for the study of atrial performance and physiology in health and disease states.


Circulation-cardiovascular Imaging | 2012

Quantifying pulmonary regurgitation and right ventricular function in surgically repaired tetralogy of Fallot: a comparative analysis of echocardiography and magnetic resonance imaging.

Laura Mercer-Rosa; Wei Yang; Shelby Kutty; Jack Rychik; Mark A. Fogel; Elizabeth Goldmuntz

Background—Patients with repaired tetralogy of Fallot are monitored for pulmonary regurgitation (PR) and right ventricular (RV) function. We sought to compare measures of PR and RV function on echocardiogram to those on cardiac magnetic resonance (CMR) and to develop a new tool for assessing PR by echocardiogram. Methods and Results—Patients with repaired tetralogy of Fallot (n=143; 12.5±3.2 years) had an echocardiogram and CMR within 3 months of each other. On echocardiogram, RV function was assessed by (1) Doppler tissue imaging of the RV free wall and (2) myocardial performance index. The ratio of diastolic and systolic time-velocity integrals measured by Doppler of the main pulmonary artery was calculated. CMR variables included RV ejection fraction, RV volumes, and pulmonary regurgitant fraction (RF). Pulmonary regurgitation was graded as mild (RF<20%), moderate (RF=20–40%), and severe (RF>40%). On CMR, RF was 34+17% and RV ejection fraction was 61+8%. Echocardiography had good sensitivity identifying cases with RF>20% (sensitivity 97%; 95% CI: 92–99%) but overestimated the amount of PR when RF<20% (false-positive rate 36%; 95% CI: 18–57%). The diastolic and systolic time-velocity integrals on echocardiogram showed moderate correlation with RF on CMR (R=0.60; P<0.0001). On CMR, RF of 20% and 40% corresponded with a diastolic and systolic time-velocity integral of 0.49 (95% CI: 0.44–0.56) and 0.72 (95% CI: 0.68–0.76), respectively. RV myocardial performance index correlated modestly with RV ejection fraction (r=−0.33; P<0.001). Conclusions—This study suggests that the diastolic and systolic time-velocity integrals ratio may make a modest contribution to the overall assessment of PR in patients with repaired tetralogy of Fallot and warrants further investigation. However, echocardiography continues to have a limited ability to quantify PR and RV function as compared with CMR.


Canadian Journal of Cardiology | 2015

Right Ventricular Adaptation and Failure in Pulmonary Arterial Hypertension

John J. Ryan; Jessica Huston; Shelby Kutty; Nathan Hatton; Lindsay C. Bowman; Lian Tian; Julia E. Herr; Amer M. Johri; Stephen L. Archer

Pulmonary arterial hypertension (PAH) is an obstructive pulmonary vasculopathy, characterized by excess proliferation, apoptosis resistance, inflammation, fibrosis, and vasoconstriction. Although PAH therapies target some of these vascular abnormalities (primarily vasoconstriction), most do not directly benefit the right ventricle (RV). This is suboptimal because a patients functional state and prognosis are largely determined by the success of the adaptation of the RV to the increased afterload. The RV initially hypertrophies but might ultimately decompensate, becoming dilated, hypokinetic, and fibrotic. A number of pathophysiologic abnormalities have been identified in the PAH RV, including: ischemia and hibernation (partially reflecting RV capillary rarefaction), autonomic activation (due to G protein receptor kinase 2-mediated downregulation and desensitization of β-adrenergic receptors), mitochondrial-metabolic abnormalities (notably increased uncoupled glycolysis and glutaminolysis), and fibrosis. Many RV abnormalities are detectable using molecular imaging and might serve as biomarkers. Some molecular pathways, such as those regulating angiogenesis, metabolism, and mitochondrial dynamics, are similarly deranged in the RV and pulmonary vasculature, offering the possibility of therapies that treat the RV and pulmonary circulation. An important paradigm in PAH is that the RV and pulmonary circulation constitute a unified cardiopulmonary unit. Clinical trials of PAH pharmacotherapies should assess both components of the cardiopulmonary unit.

Collaboration


Dive into the Shelby Kutty's collaboration.

Top Co-Authors

Avatar

David A. Danford

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Li

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joachim Lotz

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

James M. Hammel

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas R. Porter

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge