Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheldon J. J. Kwok is active.

Publication


Featured researches published by Sheldon J. J. Kwok.


Nature Biomedical Engineering | 2017

Light in diagnosis, therapy and surgery

Seok Hyun Yun; Sheldon J. J. Kwok

Light and optical techniques have made profound impacts on modern medicine, with numerous lasers and optical devices being currently used in clinical practice to assess health and treat disease. Recent advances in biomedical optics have enabled increasingly sophisticated technologies — in particular those that integrate photonics with nanotechnology, biomaterials and genetic engineering. In this Review, we revisit the fundamentals of light–matter interactions, describe the applications of light in imaging, diagnosis, therapy and surgery, overview their clinical use, and discuss the promise of emerging light-based technologies.


Biotechnology Advances | 2016

Photonic hydrogel sensors.

Ali K. Yetisen; Haider Butt; Lisa R. Volpatti; Ida Pavlichenko; Matjaž Humar; Sheldon J. J. Kwok; Heebeom Koo; Ki Su Kim; Izabela Naydenova; Ali Khademhosseini; Sei Kwang Hahn; Seok Hyun Yun

Analyte-sensitive hydrogels that incorporate optical structures have emerged as sensing platforms for point-of-care diagnostics. The optical properties of the hydrogel sensors can be rationally designed and fabricated through self-assembly, microfabrication or laser writing. The advantages of photonic hydrogel sensors over conventional assay formats include label-free, quantitative, reusable, and continuous measurement capability that can be integrated with equipment-free text or image display. This Review explains the operation principles of photonic hydrogel sensors, presents syntheses of stimuli-responsive polymers, and provides an overview of qualitative and quantitative readout technologies. Applications in clinical samples are discussed, and potential future directions are identified.


Physiology | 2015

In Vivo Fluorescence Microscopy: Lessons From Observing Cell Behavior in Their Native Environment

Myunghwan Choi; Sheldon J. J. Kwok; Seok Hyun Yun

Microscopic imaging techniques to visualize cellular behaviors in their natural environment play a pivotal role in biomedical research. Here, we review how recent technical advances in intravital microscopy have enabled unprecedented access to cellular physiology in various organs of mice in normal and diseased states.


Nanophotonics | 2017

Toward biomaterial-based implantable photonic devices

Matjaž Humar; Sheldon J. J. Kwok; Myunghwan Choi; Ali K. Yetisen; Sangyeon Cho; Seok Hyun Yun

Abstract Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs) and miniature lasers made of biocompatible materials may offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies.


Biomedical Optics Express | 2016

Optical lens-microneedle array for percutaneous light delivery

M. J. Kim; Jeesoo An; Ki Su Kim; Myunghwan Choi; Matjaž Humar; Sheldon J. J. Kwok; Tianhong Dai; Seok Hyun Yun

The limited penetration depth of light in skin tissues is a practical bottleneck in dermatologic applications of light-induced therapies, including anti-microbial blue light therapy and photodynamic skin cancer therapy. Here, we demonstrate a novel device, termed optical microneedle array (OMNA), for percutaneous light delivery. A prototype device with a 11 by 11 array of needles at a spacing of 1 mm and a length of 1.6 mm was fabricated by press-molding poly-(lactic acid) (PLA) polymers. The device also incorporates a matched microlens array that focuses the light through the needle tips at specific points to achieve an optimal intensity profile in the tissue. In experiments done with bovine tissues, the OMNA enabled us to deliver a total of 7.5% of the input photons at a wavelength of 491 nm, compared to only 0.85% without the device. This 9-fold enhancement of light delivery was close to the prediction of 10.8 dB by ray-tracing simulation and is expected to increase the effective treatment depth of anti-microbial blue light therapy significantly from 1.3 to 2.5 mm in human skin.


Nature Biomedical Engineering | 2017

A fully functional drug-eluting joint implant

V. J. Suhardi; David A. Bichara; Sheldon J. J. Kwok; Andrew A. Freiberg; Harry E. Rubash; Henrik Malchau; Seok Hyun Yun; Orhun K. Muratoglu; Ebru Oral

Despite advances in orthopedic materials, the development of drug-eluting bone and joint implants that can sustain the delivery of the drug and maintain the necessary mechanical strength in order to withstand loading has remained elusive. Here, we demonstrate that modifying the eccentricity of drug clusters and the percolation threshold in ultrahigh molecular weight polyethylene (UHMWPE) results in maximized drug elution and in the retention of mechanical strength. The optimized UHMWPE eluted antibiotic at a higher concentration for longer than the clinical gold standard antibiotic-eluting bone cement while retaining the mechanical and wear properties of clinically used UHMWPE joint prostheses. Treatment of lapine knees infected with Staphylococcus aureus with the antibiotic-eluting UHMWPE led to complete bacterial eradication and to the absence of detectable systemic effects. We argue that the antibiotic-eluting UHMWPE joint implant is a promising candidate for clinical trials.


Optica | 2016

Selective two-photon collagen crosslinking in situ measured by Brillouin microscopy

Sheldon J. J. Kwok; Ivan A. Kuznetsov; M. J. Kim; Myunghwan Choi; Giuliano Scarcelli; Seok Hyun Yun

Two-photon polymerization has enabled precise microfabrication of three-dimensional structures with applications spanning from photonic microdevices, drug delivery systems, and cellular scaffolds. We present two-photon collagen crosslinking (2P-CXL) of intact corneal tissue using riboflavin and femtosecond laser irradiation. Collagen fiber orientations and photobleaching were characterized by second harmonic generation and two-photon fluorescence imaging, respectively. Measurement of local changes in longitudinal mechanical moduli with confocal Brillouin microscopy enabled the visualization of the cross-linked pattern without perturbation of the surrounding non-irradiated regions. 2P-CXL induced stiffening was comparable to that achieved with conventional one-photon CXL. Our results demonstrate the ability to selectively stiffen biological tissue in situ at high resolution with broad implications in ophthalmology, laser surgery, and tissue engineering.


Scientific Reports | 2016

Two-photon excited photoconversion of cyanine-based dyes

Sheldon J. J. Kwok; Myunghwan Choi; Brijesh Bhayana; Xueli Zhang; Chongzhao Ran; Seok Hyun Yun

The advent of phototransformable fluorescent proteins has led to significant advances in optical imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine-based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal. These findings are expected to be useful for applications involving rapid labeling of cells deep in tissue.


Optics Express | 2016

Shear Brillouin light scattering microscope.

M. J. Kim; Sebastien Besner; Antoine Ramier; Sheldon J. J. Kwok; Jeesoo An; Giuliano Scarcelli; Seok Hyun Yun

Brillouin spectroscopy has been used to characterize shear acoustic phonons in materials. However, conventional instruments had slow acquisition times over 10 min per 1 mW of input optical power, and they required two objective lenses to form a 90° scattering geometry necessary for polarization coupling by shear phonons. Here, we demonstrate a confocal Brillouin microscope capable of detecting both shear and longitudinal phonons with improved speeds and with a single objective lens. Brillouin scattering spectra were measured from polycarbonate, fused quartz, and borosilicate in 1-10 s at an optical power level of 10 mW. The elastic constants, phonon mean free path and the ratio of the Pockels coefficients were determined at microscopic resolution.


Investigative Ophthalmology & Visual Science | 2017

Flexible Optical Waveguides for Uniform Periscleral Cross-Linking

Sheldon J. J. Kwok; M. J. Kim; Harvey H. Lin; Theo G. Seiler; Eric Beck; Peng Shao; Irene E. Kochevar; Theo Seiler; Seok Hyun Yun

Purpose Scleral cross-linking (SXL) with a photosensitizer and light is a potential strategy to mechanically reinforce the sclera and prevent progressive axial elongation responsible for severe myopia. Current approaches for light delivery to the sclera are cumbersome, do not provide uniform illumination, and only treat a limited area of sclera. To overcome these challenges, we developed flexible optical waveguides optimized for efficient, homogeneous light delivery. Methods Waveguides were fabricated from polydimethylsiloxane elastomer. Blue light (445 nm) is coupled into the waveguide with an input fiber. Light delivery efficiency from the waveguide to scleral tissue was measured and fit to a theoretical model. SXL was performed on fresh porcine eyes stained with 0.5% riboflavin, using irradiances of 0, 25, and 50 mW/cm2 around the entire equator of the eye. Stiffness of scleral strips was characterized with tensiometry. Results Light delivery with a waveguide of tapered thickness (1.4–0.5 mm) enhanced the uniformity of light delivery, compared to a flat waveguide, achieving a coefficient of variation of less than 10%. At 8% strain, sclera cross-linked with the waveguides at 50 mW/cm2 for 30 minutes had a Youngs modulus of 10.7 ± 1.0 MPa, compared to 5.9 ± 0.5 MPa for no irradiation, with no difference in stiffness between proximally and distally treated halves. The stiffness of waveguide-irradiated samples did not differ from direct irradiation at the same irradiance. Conclusions We developed flexible waveguides for periscleral cross-linking. We demonstrated efficient and uniform stiffening of a 5-mm-wide equatorial band of scleral tissue.

Collaboration


Dive into the Sheldon J. J. Kwok's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sei Kwang Hahn

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge