Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheldon Milstien is active.

Publication


Featured researches published by Sheldon Milstien.


Nature Reviews Molecular Cell Biology | 2003

Sphingosine-1-phosphate: an enigmatic signalling lipid

Sarah Spiegel; Sheldon Milstien

The evolutionarily conserved actions of the sphingolipid metabolite, sphingosine-1-phosphate (S1P), in yeast, plants and mammals have shown that it has important functions. In higher eukaryotes, S1P is the ligand for a family of five G-protein-coupled receptors. These S1P receptors are differentially expressed, coupled to various G proteins, and regulate angiogenesis, vascular maturation, cardiac development and immunity, and are important for directed cell movement.


Science | 2009

Regulation of Histone Acetylation in the Nucleus by Sphingosine-1-Phosphate

Nitai C. Hait; Jeremy C. Allegood; Michael Maceyka; Graham M. Strub; Kuzhuvelil B. Harikumar; Sandeep K. Singh; Cheng Luo; Ronen Marmorstein; Tomasz Kordula; Sheldon Milstien; Sarah Spiegel

Epigenetic Signals The lipid sphingosine-1-phosphate (S1P) is a signaling molecule that binds to receptors on the cell surface to initiate biochemical changes that control a range of biological processes from growth and survival to immune reactions. Hait et al. (p. 1254) report that S1P can also function by direct binding to the nuclear enzymes, histone deacetylases (HDACs) 1 and 2. The enzyme that generates S1P, sphingosine kinase 2 (ShpK2) is present in the nucleus in complexes with HDAC1 and HDAC2. Generation of S1P and its binding to HDACs inhibited deacetylation of histone. Such histone modification is an epigenetic mechanism that controls gene transcription. Thus, generation of S1P in the nucleus appears to be a signaling mechanism by which cells can control gene expression in response to various stimuli. A phospholipid that binds to nuclear enzymes modifies gene transcription in response to external stimuli. The pleiotropic lipid mediator sphingosine-1-phosphate (S1P) can act intracellularly independently of its cell surface receptors through unknown mechanisms. Sphingosine kinase 2 (SphK2), one of the isoenzymes that generates S1P, was associated with histone H3 and produced S1P that regulated histone acetylation. S1P specifically bound to the histone deacetylases HDAC1 and HDAC2 and inhibited their enzymatic activity, preventing the removal of acetyl groups from lysine residues within histone tails. SphK2 associated with HDAC1 and HDAC2 in repressor complexes and was selectively enriched at the promoters of the genes encoding the cyclin-dependent kinase inhibitor p21 or the transcriptional regulator c-fos, where it enhanced local histone H3 acetylation and transcription. Thus, HDACs are direct intracellular targets of S1P and link nuclear S1P to epigenetic regulation of gene expression.


Pharmacological Reviews | 2008

“Inside-Out” Signaling of Sphingosine-1-Phosphate: Therapeutic Targets

Kazuaki Takabe; Steven W. Paugh; Sheldon Milstien; Sarah Spiegel

Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many critical cellular processes including proliferation, survival, and migration, as well as angiogenesis and allergic responses. S1P levels inside cells are tightly regulated by the balance between its synthesis by sphingosine kinases and degradation. S1P is interconvertible with ceramide, which is a critical mediator of apoptosis. It has been postulated that the ratio between S1P and ceramide determines cell fate. Activation of sphingosine kinase by a variety of agonists increases intracellular S1P, which in turn can function intracellularly as a second messenger or be secreted out of the cell and act extracellularly by binding to and signaling through S1P receptors in autocrine and/or paracrine manners. Recent studies suggest that this “inside-out” signaling by S1P may play a role in many human diseases, including cancer, atherosclerosis, inflammation, and autoimmune disorders such as multiple sclerosis. In this review we summarize metabolism of S1P, mechanisms of sphingosine kinase activation, and S1P receptors and their downstream signaling pathways and examine relationships to multiple disease processes. In particular, we describe recent preclinical and clinical trials of therapies targeting S1P signaling, including 2-amino-2-propane-1,3-diol hydrochloride (FTY720, fingolimod), S1P receptor agonists, sphingosine kinase inhibitors, and anti-S1P monoclonal antibody.


Nature | 2010

Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2

Sergio E. Alvarez; Kuzhuvelil B. Harikumar; Nitai C. Hait; Jeremy C. Allegood; Graham M. Strub; Eugene Y. Kim; Michael Maceyka; Hualiang Jiang; Cheng Luo; Tomasz Kordula; Sheldon Milstien; Sarah Spiegel

Tumour-necrosis factor (TNF) receptor-associated factor 2 (TRAF2) is a key component in NF-κB signalling triggered by TNF-α. Genetic evidence indicates that TRAF2 is necessary for the polyubiquitination of receptor interacting protein 1 (RIP1) that then serves as a platform for recruitment and stimulation of IκB kinase, leading to activation of the transcription factor NF-κB. Although TRAF2 is a RING domain ubiquitin ligase, direct evidence that TRAF2 catalyses the ubiquitination of RIP1 is lacking. TRAF2 binds to sphingosine kinase 1 (SphK1), one of the isoenzymes that generates the pro-survival lipid mediator sphingosine-1-phosphate (S1P) inside cells. Here we show that SphK1 and the production of S1P is necessary for lysine-63-linked polyubiquitination of RIP1, phosphorylation of IκB kinase and IκBα, and IκBα degradation, leading to NF-κB activation. These responses were mediated by intracellular S1P independently of its cell surface G-protein-coupled receptors. S1P specifically binds to TRAF2 at the amino-terminal RING domain and stimulates its E3 ligase activity. S1P, but not dihydro-S1P, markedly increased recombinant TRAF2-catalysed lysine-63-linked, but not lysine-48-linked, polyubiquitination of RIP1 in vitro in the presence of the ubiquitin conjugating enzymes (E2) UbcH13 or UbcH5a. Our data show that TRAF2 is a novel intracellular target of S1P, and that S1P is the missing cofactor for TRAF2 E3 ubiquitin ligase activity, indicating a new paradigm for the regulation of lysine-63-linked polyubiquitination. These results also highlight the key role of SphK1 and its product S1P in TNF-α signalling and the canonical NF-κB activation pathway important in inflammatory, antiapoptotic and immune processes.


Trends in Cell Biology | 2012

Sphingosine-1-phosphate signaling and its role in disease

Michael Maceyka; Kuzhuvelil B. Harikumar; Sheldon Milstien; Sarah Spiegel

The bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) is now recognized as a critical regulator of many physiological and pathophysiological processes, including cancer, atherosclerosis, diabetes and osteoporosis. S1P is produced in cells by two sphingosine kinase isoenzymes, SphK1 and SphK2. Many cells secrete S1P, which can then act in an autocrine or paracrine manner. Most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. More recently, it was shown that S1P also has important intracellular targets involved in inflammation, cancer and Alzheimers disease. This suggests that S1P actions are much more complex than previously thought, with important ramifications for development of therapeutics. This review highlights recent advances in our understanding of the mechanisms of action of S1P and its roles in disease.


Nature Reviews Immunology | 2011

The outs and the ins of sphingosine-1-phosphate in immunity

Sarah Spiegel; Sheldon Milstien

The potent lipid mediator sphingosine-1-phosphate (S1P) is produced inside cells by two closely related kinases, sphingosine kinase 1 (SPHK1) and SPHK2, and has emerged as a crucial regulator of immunity. Many of the actions of S1P in innate and adaptive immunity are mediated by its binding to five G protein-coupled receptors, designated S1PR1–5, but recent findings have also identified important roles for S1P as a second messenger during inflammation. In this Review, we discuss recent advances in our understanding of the roles of S1P receptors and describe the newly identified intracellular targets of S1P that are crucial for immune responses. Finally, we discuss the therapeutic potential of new drugs that target S1P signalling and functions.


Journal of Biological Chemistry | 2005

SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism

Michael Maceyka; Heidi Sankala; Nitai C. Hait; Hervé Le Stunff; Hong Liu; Rachelle Toman; Claiborne Lee Collier; Min Zhang; Leslie S. Satin; Alfred H. Merrill; Sheldon Milstien; Sarah Spiegel

The potent sphingolipid metabolite sphingosine 1-phosphate is produced by phosphorylation of sphingosine catalyzed by sphingosine kinase (SphK) types 1 and 2. In contrast to pro-survival SphK1, the putative BH3-only protein SphK2 inhibits cell growth and enhances apoptosis. Here we show that SphK2 catalytic activity also contributes to its ability to induce apoptosis. Overexpressed SphK2 also increased cytosolic free calcium induced by serum starvation. Transfer of calcium to mitochondria was required for SphK2-induced apoptosis, as cell death and cytochrome c release was abrogated by inhibition of the mitochondrial Ca2+ transporter. Serum starvation increased the proportion of SphK2 in the endoplasmic reticulum and targeting SphK1 to the endoplasmic reticulum converted it from anti-apoptotic to pro-apoptotic. Overexpression of SphK2 increased incorporation of [3H]palmitate, a substrate for both serine palmitoyltransferase and ceramide synthase, into C16-ceramide, whereas SphK1 decreased it. Electrospray ionizationmass spectrometry/mass spectrometry also revealed an opposite effect on ceramide mass levels. Importantly, specific down-regulation of SphK2 reduced conversion of sphingosine to ceramide in the recycling pathway and conversely, down-regulation of SphK1 increased it. Our results demonstrate that SphK1 and SphK2 have opposing roles in the regulation of ceramide biosynthesis and suggest that the location of sphingosine 1-phosphate production dictates its functions.


Journal of Biological Chemistry | 1999

Sphingosine 1-Phosphate Stimulates Cell Migration through a Gi-coupled Cell Surface Receptor POTENTIAL INVOLVEMENT IN ANGIOGENESIS

Fang Wang; James R. Van Brocklyn; John P. Hobson; Sharareh Movafagh; Zofia Zukowska-Grojec; Sheldon Milstien; Sarah Spiegel

Sphingosine 1-phosphate (SPP) has been shown to inhibit chemotaxis of a variety of cells, in some cases through intracellular actions, while in others through receptor-mediated effects. Surprisingly, we found that low concentrations of SPP (10–100 nm) increased chemotaxis of HEK293 cells overexpressing the G protein-coupled SPP receptor EDG-1. In agreement with previous findings in human breast cancer cells (Wang, F., Nohara, K., Olivera, O., Thompson, E. W., and Spiegel, S. (1999) Exp. Cell Res. 247, 17–28), SPP, at micromolar concentrations, inhibited chemotaxis of both vector- and EDG-1-overexpressing HEK293 cells. Nanomolar concentrations of SPP also induced a marked increase in chemotaxis of human umbilical vein endothelial cells (HUVEC) and bovine aortic endothelial cells (BAEC), which express the SPP receptors EDG-1 and EDG-3, while higher concentrations of SPP were less effective. Treatment with pertussis toxin, which ADP-ribosylates and inactivates Gi-coupled receptors, blocked SPP-induced chemotaxis. Checkerboard analysis indicated that SPP stimulates both chemotaxis and chemokinesis. Taken together, these data suggest that SPP stimulates cell migration by binding to EDG-1. Similar to SPP, sphinganine 1-phosphate (dihydro-SPP), which also binds to this family of SPP receptors, enhanced chemotaxis; whereas, another structurally related lysophospholipid, lysophosphatidic acid, did not compete with SPP for binding nor did it have significant effects on chemotaxis of endothelial cells. Furthermore, SPP increased proliferation of HUVEC and BAEC in a pertussis toxin-sensitive manner. SPP and dihydro-SPP also stimulated tube formation of BAEC grown on collagen gels (in vitro angiogenesis), and potentiated tube formation induced by basic fibroblast growth factor. Pertussis toxin treatment blocked SPP-, but not bFGF-stimulated in vitro angiogenesis. Our results suggest that SPP may play a role in angiogenesis through binding to endothelial cell Gi-coupled SPP receptors.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Role of ABCC1 in export of sphingosine-1-phosphate from mast cells

Poulami Mitra; Carole A. Oskeritzian; Shawn G. Payne; Michael A. Beaven; Sheldon Milstien; Sarah Spiegel

Mast cells play a pivotal role in inflammatory and immediate-type allergic reactions by secreting a variety of potent inflammatory mediators, including sphingosine-1-phosphate (S1P). However, it is not known how S1P is released from cells. Here, we report that S1P is exported from mast cells independently of their degranulation and demonstrate that it is mediated by ATP binding cassette (ABC) transporters. Constitutive and antigen-stimulated S1P release was inhibited by MK571, an inhibitor of ABCC1 (MRP1), but not by inhibitors of ABCB1 (MDR-1, P-glycoprotein). Moreover, down-regulation of ABCC1 with small interfering RNA, which decreased its cell surface expression, markedly reduced S1P export from both rat RBL-2H3 and human LAD2 mast cells. Transport of S1P by ABCC1 influenced migration of mast cells toward antigen but not degranulation. These findings have important implications for S1P functions in mast cell-mediated immune responses.


Journal of Clinical Investigation | 1994

Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity.

Pnina Rosenkranz-Weiss; William C. Sessa; Sheldon Milstien; Seymour Kaufman; Cornelius A. Watson; Jordan S. Pober

We have examined cytokine regulation of nitric oxide synthase (NOS) in human umbilical vein endothelial cells (HUVEC). 24-h treatment with IFN-gamma (200 U/ml) plus TNF (200 U/ml) or IL-1 beta (5 U/ml) increased NOS activity in HUVEC lysates, measured as conversion of [14C]L-arginine to [14C]L-citrulline. Essentially, all NOS activity in these cells was calcium dependent and membrane associated. Histamine-induced nitric oxide release, measured by chemiluminescence, was greater in cytokine-treated cells than in control cells. Paradoxically, steady-state mRNA levels of endothelial NOS fell by 94 +/- 2.0% after cytokine treatment. Supplementation of HUVEC lysates with exogenous tetrahydrobiopterin (3 microM) greatly increased total NOS activity, and under these assay conditions, cytokine treatment decreased maximal NOS activity. IFN-gamma plus TNF or IL-1 beta increased endogenous tetrahydrobiopterin levels and GTP cyclohydrolase I activity, the rate-limiting enzyme of tetrahydrobiopterin synthesis. Intracellular tetrahydrobiopterin levels were higher in freshly isolated HUVEC than in cultured cells, but were still limiting. We conclude that inflammatory cytokines increase NOS activity in cultured human endothelial cells by increasing tetrahydrobiopterin levels in the face of falling total enzyme; similar regulation appears possible in vivo.

Collaboration


Dive into the Sheldon Milstien's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuaki Takabe

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Maceyka

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Nitai C. Hait

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Seymour Kaufman

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Akimitsu Yamada

Yokohama City University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeremy C. Allegood

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Tomoyoshi Aoyagi

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Wei-Ching Huang

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge