Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shelise Brooks is active.

Publication


Featured researches published by Shelise Brooks.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants

Stephen C. J. Parker; Michael L. Stitzel; D. Leland Taylor; Jose Miguel Orozco; Michael R. Erdos; Jennifer A. Akiyama; Kelly Lammerts van Bueren; Peter S. Chines; Nisc Comparative Sequencing Program; Brian L. Black; Axel Visel; Len A. Pennacchio; Francis S. Collins; Jesse Becker; Betty Benjamin; Robert W. Blakesley; Gerry Bouffard; Shelise Brooks; Holly Coleman; Mila Dekhtyar; Michael Gregory; Xiaobin Guan; Jyoti Gupta; Joel Han; April Hargrove; Shi-ling Ho; Taccara Johnson; Richelle Legaspi; Sean Lovett; Quino Maduro

Significance Using high-throughput experiments, we determined the functional epigenomic landscape in pancreatic islet cells. Computational integration of these data along with similar data from the ENCODE project revealed the presence of large gene control elements across diverse cell types that we refer to as “stretch enhancers.” Stretch enhancers are cell type specific and are associated with increased expression of genes involved in cell-specific processes. We find that genetic variations associated with common disease are highly enriched in stretch enhancers; notably, stretch enhancers specific to pancreatic islets harbor variants linked to type 2 diabetes and related traits. We propose that stretch enhancers form as pluripotent cells differentiate into committed lineages, to program important cell-specific gene expression. Chromatin-based functional genomic analyses and genomewide association studies (GWASs) together implicate enhancers as critical elements influencing gene expression and risk for common diseases. Here, we performed systematic chromatin and transcriptome profiling in human pancreatic islets. Integrated analysis of islet data with those from nine cell types identified specific and significant enrichment of type 2 diabetes and related quantitative trait GWAS variants in islet enhancers. Our integrated chromatin maps reveal that most enhancers are short (median = 0.8 kb). Each cell type also contains a substantial number of more extended (≥3 kb) enhancers. Interestingly, these stretch enhancers are often tissue-specific and overlap locus control regions, suggesting that they are important chromatin regulatory beacons. Indeed, we show that (i) tissue specificity of enhancers and nearby gene expression increase with enhancer length; (ii) neighborhoods containing stretch enhancers are enriched for important cell type–specific genes; and (iii) GWAS variants associated with traits relevant to a particular cell type are more enriched in stretch enhancers compared with short enhancers. Reporter constructs containing stretch enhancer sequences exhibited tissue-specific activity in cell culture experiments and in transgenic mice. These results suggest that stretch enhancers are critical chromatin elements for coordinating cell type–specific regulatory programs and that sequence variation in stretch enhancers affects risk of major common human diseases.


Science Translational Medicine | 2014

Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae

Sean Conlan; Pamela J. Thomas; Clayton Deming; Morgan Park; Anna F. Lau; John P. Dekker; Evan S. Snitkin; Tyson A. Clark; Khai Luong; Yi Song; Yu-Chih Tsai; Matthew Boitano; Jyoti G. Dayal; Shelise Brooks; Brian Schmidt; Alice C. Young; James W. Thomas; Gerard G. Bouffard; Robert W. Blakesley; Nisc Comparative Sequencing Program; James C. Mullikin; Jonas Korlach; David K. Henderson; Karen M. Frank; Tara N. Palmore; Julia A. Segre

Single-molecule sequencing of bacteria at the NIH Clinical Center documents diverse plasmids encoding antibiotic resistance and their transfer between microbes. How Antibiotic Resistance Spreads Among Bacteria Antibiotic-resistant microbes are spreading at an alarming rate in health care facilities throughout the world. Conlan et al. use a new DNA sequencing method to take a close look at one way in which antibiotic resistance spreads. With single-molecule sequencing, the authors completely characterized individual plasmids, the circular bits of DNA that carry the genes for antibiotic resistance in bacteria. They focused on resistance to the carbapenems, a class of antibiotics that is often used for infections that do not respond to more conventional antimicrobial agents. By using this approach in their microbial surveillance program at the NIH Clinical Center, the authors found evidence that plasmids carrying carbapenemase genes moved from one microbial species to another within the hospital environment. They also used the technique to test hypotheses about patient-to-patient transmission and to characterize a previously undescribed carbapenemase-encoding plasmid carried by diverse bacterial species that could cause dangerous clinical infections. Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common health care–associated infections nearly impossible to treat. To determine the diversity of carbapenemase-encoding plasmids and assess their mobility among bacterial species, we performed comprehensive surveillance and genomic sequencing of carbapenem-resistant Enterobacteriaceae in the National Institutes of Health (NIH) Clinical Center patient population and hospital environment. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full end-to-end assembly revealed that these organisms carry the carbapenem resistance genes on a wide array of plasmids. K. pneumoniae and E. cloacae isolated simultaneously from a single patient harbored two different carbapenemase-encoding plasmids, indicating that plasmid transfer between organisms was unlikely within this patient. We did, however, find evidence of horizontal transfer of carbapenemase-encoding plasmids between K. pneumoniae, E. cloacae, and C. freundii in the hospital environment. Our data, including full plasmid identification, challenge assumptions about horizontal gene transfer events within patients and identify possible connections between patients and the hospital environment. In addition, we identified a new carbapenemase-encoding plasmid of potentially high clinical impact carried by K. pneumoniae, E. coli, E. cloacae, and Pantoea species, in unrelated patients and in the hospital environment.


Cell | 2015

Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of Chronic HIV-1 Infection

Xueling Wu; Z. F. Zhang; Chaim A. Schramm; M. Gordon Joyce; Young Do Kwon; Tongqing Zhou; Zizhang Sheng; Baoshan Zhang; Sijy O’Dell; Krisha McKee; Ivelin S. Georgiev; Gwo-Yu Chuang; Nancy S. Longo; Rebecca M. Lynch; Kevin O. Saunders; Cinque Soto; Sanjay Srivatsan; Yongping Yang; Robert T. Bailer; Mark K. Louder; Betty Benjamin; Robert W. Blakesley; Gerry Bouffard; Shelise Brooks; Holly Coleman; Mila Dekhtyar; Michael Gregory; Xiaobin Guan; Jyoti Gupta; Joel Han

HIV-1-neutralizing antibodies develop in most HIV-1-infected individuals, although highly effective antibodies are generally observed only after years of chronic infection. Here, we characterize the rate of maturation and extent of diversity for the lineage that produced the broadly neutralizing antibody VRC01 through longitudinal sampling of peripheral B cell transcripts over 15 years and co-crystal structures of lineage members. Next-generation sequencing identified VRC01-lineage transcripts, which encompassed diverse antibodies organized into distinct phylogenetic clades. Prevalent clades maintained characteristic features of antigen recognition, though each evolved binding loops and disulfides that formed distinct recognition surfaces. Over the course of the study period, VRC01-lineage clades showed continuous evolution, with rates of ∼2 substitutions per 100 nucleotides per year, comparable to that of HIV-1 evolution. This high rate of antibody evolution provides a mechanism by which antibody lineages can achieve extraordinary diversity and, over years of chronic infection, develop effective HIV-1 neutralization.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Mining the antibodyome for HIV-1–neutralizing antibodies with next-generation sequencing and phylogenetic pairing of heavy/light chains

Jiang Zhu; Gilad Ofek; Yongping Yang; Baoshan Zhang; Mark K. Louder; Gabriel Lu; Krisha McKee; Marie Pancera; Jeff Skinner; Z. F. Zhang; Robert Parks; Joshua Eudailey; Krissey E. Lloyd; Julie Blinn; S. Munir Alam; Barton F. Haynes; Melissa Simek; Dennis R. Burton; Wayne C. Koff; Nisc Comparative Sequencing Program; James C. Mullikin; John R. Mascola; Lawrence Shapiro; Peter D. Kwong; Jesse Becker; Betty Benjamin; Robert W. Blakesley; Gerry Bouffard; Shelise Brooks; Holly Coleman

Next-generation sequencing of antibody transcripts from HIV-1–infected individuals with broadly neutralizing antibodies could provide an efficient means for identifying somatic variants and characterizing their lineages. Here, we used 454 pyrosequencing and identity/divergence grid sampling to analyze heavy- and light-chain sequences from donor N152, the source of the broadly neutralizing antibody 10E8. We identified variants with up to 28% difference in amino acid sequence. Heavy- and light-chain phylogenetic trees of identified 10E8 variants displayed similar architectures, and 10E8 variants reconstituted from matched and unmatched phylogenetic branches displayed significantly lower autoreactivity when matched. To test the generality of phylogenetic pairing, we analyzed donor International AIDS Vaccine Initiative 84, the source of antibodies PGT141–145. Heavy- and light-chain phylogenetic trees of PGT141–145 somatic variants also displayed remarkably similar architectures; in this case, branch pairings could be anchored by known PGT141–145 antibodies. Altogether, our findings suggest that phylogenetic matching of heavy and light chains can provide a means to approximate natural pairings.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Genome-wide recombination drives diversification of epidemic strains of Acinetobacter baumannii

Evan S. Snitkin; Adrian M. Zelazny; Clemente I. Montero; Frida Stock; Lilia A. Mijares; Nisc Comparative Sequence Program; Patrick R. Murray; Julie Segre; Jim Mullikin; Robert W. Blakesley; Alice Young; Grace Chu; Colleen Ramsahoye; Sean Lovett; Joel Han; Richelle Legaspi; Christina Sison; Michael Gregory; Casandra Montemayor; Marie Gestole; April Hargrove; Taccara Johnson; Jerlil Myrick; Nancy Riebow; Brian Schmidt; Betsy Novotny; Jyoti Gupta; Betty Benjamin; Shelise Brooks; Holly Coleman

Acinetobacter baumannii is an emerging human pathogen and a significant cause of nosocomial infections among hospital patients worldwide. The enormous increase in multidrug resistance among hospital isolates and the recent emergence of pan-drug–resistant strains underscores the urgency to understand how A. baumannii evolves in hospital environments. To this end, we undertook a genomic study of a polyclonal outbreak of multidrug-resistant A. baumannii at the research-based National Institutes of Health Clinical Center. Comparing the complete genome sequences of the three dominant outbreak strain types enabled us to conclude that, despite all belonging to the same epidemic lineage, the three strains diverged before their arrival at the National Institutes of Health. The simultaneous presence of three divergent strains from this lineage supports its increasing prevalence in international hospitals and suggests an ongoing adaptation to the hospital environment. Further genomic comparisons uncovered that much of the diversification that occurred since the divergence of the three outbreak strains was mediated by homologous recombination across 20% of their genomes. Inspection of recombinant regions revealed that several regions were associated with either the loss or swapping out of genes encoding proteins that are exposed to the cell surface or that synthesize cell-surface molecules. Extending our analysis to a larger set of international clinical isolates revealed a previously unappreciated ability of A. baumannii to vary surface molecules through horizontal gene transfer, with subsequent intraspecies dissemination by homologous recombination. These findings have immediate implications in surveillance, prevention, and treatment of A. baumannii infections.


Genome Biology | 2012

Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates

Sean Conlan; Lilia A. Mijares; Jesse Becker; Robert W. Blakesley; Gerard G. Bouffard; Shelise Brooks; Holly Coleman; Jyoti Gupta; Natalie Gurson; Morgan Park; Brian L. Schmidt; Pamela J. Thomas; Michael Otto; Heidi H. Kong; Patrick R. Murray; Julia A. Segre

BackgroundWhile Staphylococcus epidermidis is commonly isolated from healthy human skin, it is also the most frequent cause of nosocomial infections on indwelling medical devices. Despite its importance, few genome sequences existed and the most frequent hospital-associated lineage, ST2, had not been fully sequenced.ResultsWe cultivated 71 commensal S. epidermidis isolates from 15 skin sites and compared them with 28 nosocomial isolates from venous catheters and blood cultures. We produced 21 commensal and 9 nosocomial draft genomes, and annotated and compared their gene content, phylogenetic relatedness and biochemical functions. The commensal strains had an open pan-genome with 80% core genes and 20% variable genes. The variable genome was characterized by an overabundance of transposable elements, transcription factors and transporters. Biochemical diversity, as assayed by antibiotic resistance and in vitro biofilm formation, demonstrated the varied phenotypic consequences of this genomic diversity. The nosocomial isolates exhibited both large-scale rearrangements and single-nucleotide variation. We showed that S. epidermidis genomes separate into two phylogenetic groups, one consisting only of commensals. The formate dehydrogenase gene, present only in commensals, is a discriminatory marker between the two groups.ConclusionsCommensal skin S. epidermidis have an open pan-genome and show considerable diversity between isolates, even when derived from a single individual or body site. For ST2, the most common nosocomial lineage, we detect variation between three independent isolates sequenced. Finally, phylogenetic analyses revealed a previously unrecognized group of S. epidermidis strains characterized by reduced virulence and formate dehydrogenase, which we propose as a clinical molecular marker.


BMC Biology | 2012

Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes

Christine E. Schnitzler; Kevin Pang; Meghan L. Powers; Adam M. Reitzel; Joseph F. Ryan; David K. Simmons; Takashi Tada; Morgan Park; Jyoti Gupta; Shelise Brooks; Robert W. Blakesley; Shozo Yokoyama; Steven H. D. Haddock; Mark Q. Martindale; Andreas D. Baxevanis

BackgroundCalcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria) and comb jellies (Phylum Ctenophora). The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis.ResultsThe Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light emission, raising the hypothesis that light production and light reception may be functionally connected in ctenophore photocytes. We also present genomic evidence of a complete ciliary phototransduction cascade in Mnemiopsis.ConclusionsThis study elucidates the genomic organization, evolutionary history, and developmental expression of photoprotein and opsin genes in the ctenophore Mnemiopsis leidyi, introduces a novel dual role for ctenophore photocytes in both bioluminescence and phototransduction, and raises the possibility that light production and light reception are linked in this early-branching non-bilaterian animal.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Circadian changes in long noncoding RNAs in the pineal gland.

Steven L. Coon; Peter J. Munson; Praveen F. Cherukuri; David Sugden; Martin F. Rath; Morten Møller; Samuel J. H. Clokie; Cong Fu; Mary E. Olanich; Zoila Rangel; Thomas Werner; Nisc Comparative Sequencing Program; James C. Mullikin; David C. Klein; Betty Benjamin; Robert W. Blakesley; Gerry Bouffard; Shelise Brooks; Grace Chu; Holly Coleman; Mila Dekhtyar; Michael Gregory; Xiaobin Guan; Jyoti Gupta; Joel Han; April Hargrove; Shi-ling Ho; Taccara Johnson; Richelle Legaspi; Sean Lovett

Long noncoding RNAs (lncRNAs) play a broad range of biological roles, including regulation of expression of genes and chromosomes. Here, we present evidence that lncRNAs are involved in vertebrate circadian biology. Differential night/day expression of 112 lncRNAs (0.3 to >50 kb) occurs in the rat pineal gland, which is the source of melatonin, the hormone of the night. Approximately one-half of these changes reflect nocturnal increases. Studies of eight lncRNAs with 2- to >100-fold daily rhythms indicate that, in most cases, the change results from neural stimulation from the central circadian oscillator in the suprachiasmatic nucleus (doubling time = 0.5–1.3 h). Light exposure at night rapidly reverses (halving time = 9–32 min) levels of some of these lncRNAs. Organ culture studies indicate that expression of these lncRNAs is regulated by norepinephrine acting through cAMP. These findings point to a dynamic role of lncRNAs in the circadian system.


Nature Communications | 2015

Analysis of immunoglobulin transcripts and hypermutation following SHIV(AD8) infection and protein-plus-adjuvant immunization.

Joseph R. Francica; Zizhang Sheng; Z. F. Zhang; Yoshiaki Nishimura; Masashi Shingai; Akshaya Ramesh; Brandon F. Keele; Stephen D. Schmidt; Barbara J. Flynn; Sam Darko; Rebecca M. Lynch; Takuya Yamamoto; Rodrigo Matus-Nicodemos; David Wolinsky; Nisc Comparative Sequencing Program; Betty Barnabas; Robert W. Blakesley; Gerry Bouffard; Shelise Brooks; Holly Coleman; Mila Dekhtyar; Michael Gregory; Xiaobin Guan; Jyoti Gupta; Joel Han; Shi-ling Ho; Richelle Legaspi; Quino Maduro; Cathy Masiello; Baishali Maskeri

Developing predictive animal models to assess how candidate vaccines and infection influence the ontogenies of Envelope (Env)-specific antibodies is critical for the development of an HIV vaccine. Here we use two nonhuman primate models to compare the roles of antigen persistence, diversity and innate immunity. We perform longitudinal analyses of HIV Env-specific B-cell receptor responses to SHIVAD8 infection and Env protein vaccination with eight different adjuvants. A subset of the SHIVAD8-infected animals with higher viral loads and greater Env diversity show increased neutralization associated with increasing somatic hypermutation (SHM) levels over time. The use of adjuvants results in increased ELISA titres but does not affect the mean SHM levels or CDR H3 lengths. Our study shows how the ontogeny of Env-specific B cells can be tracked, and provides insights into the requirements for developing neutralizing antibodies that should facilitate translation to human vaccine studies.


Journal of Clinical Microbiology | 2013

Pan-PCR, a computational method for designing bacterium-typing assays based on whole-genome sequence data.

Joy Y Yang; Shelise Brooks; Jennifer A. Meyer; Robert R. Blakesley; Adrian M. Zelazny; Julia A. Segre; Evan S. Snitkin

ABSTRACT With increasing rates of antibiotic resistance, bacterial infections have become more difficult to treat, elevating the importance of surveillance and prevention. Effective surveillance relies on the availability of rapid, cost-effective, and informative typing methods to monitor bacterial isolates. PCR-based typing assays are fast and inexpensive, but their utility is limited by the lack of targets which are capable of distinguishing between strains within a species. To identify highly informative PCR targets from the growing base of publicly available bacterial genome sequences, we developed pan-PCR. This computer algorithm uses existing genome sequences for isolates of a species of interest and identifies a set of genes whose patterns of presence or absence provide the best discrimination between strains in this species. A set of PCR primers targeting the identified genes is then designed, with each PCR product being of a different size to allow multiplexing. These target DNA regions and PCR primers can then be utilized to type bacterial isolates. To evaluate pan-PCR, we designed an assay for the emerging pathogen Acinetobacter baumannii. Taking as input a set of 29 previously sequenced genomes, pan-PCR identified 6 genetic loci whose presence or absence was capable of distinguishing all the input strains. This assay was applied to a set of patient isolates, and its discriminatory power was compared to that of multilocus sequence typing (MLST) and whole-genome optical maps. We found that the pan-PCR assay was capable of making clinically relevant distinctions between strains with identical MLST profiles and showed a discriminatory power similar to that of optical maps. Pan-PCR represents a tool capable of exploiting available genome sequence data to design highly discriminatory PCR assays. The ease of design and implementation makes this approach feasible for diagnostic facilities of all sizes.

Collaboration


Dive into the Shelise Brooks's collaboration.

Top Co-Authors

Avatar

Robert W. Blakesley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Holly Coleman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jyoti Gupta

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Betty Benjamin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gerry Bouffard

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel Han

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Xiaobin Guan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael Gregory

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mila Dekhtyar

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge