Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shelley I. Fried is active.

Publication


Featured researches published by Shelley I. Fried.


Nature | 2002

Mechanisms and circuitry underlying directional selectivity in the retina

Shelley I. Fried; Thomas Münch; Frank S. Werblin

In the retina, directionally selective ganglion cells respond with robust spiking to movement in their preferred direction, but show minimal response to movement in the opposite, or null, direction. The mechanisms and circuitry underlying this computation have remained controversial. Here we show, by isolating the excitatory and inhibitory inputs to directionally selective cells and measuring direct connections between these cells and presynaptic neurons, that a presynaptic interneuron, the starburst amacrine cell, delivers direct inhibition to directionally selective cells. The processes of starburst cells are connected asymmetrically to directionally selective cells: those pointing in the null direction deliver inhibition; those pointing in the preferred direction do not. Starburst cells project inhibition laterally ahead of a stimulus moving in the null direction. In addition, starburst inhibition is itself directionally selective: it is stronger for movement in the null direction. Excitation in response to null direction movement is reduced by an inhibitory signal acting at a site that is presynaptic to the directionally selective cell. The interplay of these components generates reduced excitation and enhanced inhibition in the null direction, thereby ensuring robust directional selectivity.


Journal of Neurophysiology | 2009

Axonal Sodium-Channel Bands Shape the Response to Electric Stimulation in Retinal Ganglion Cells

Shelley I. Fried; Aaron C. W. Lasker; N. J. Desai; Donald K. Eddington; Joseph F. Rizzo

Electric stimulation of the retina reliably elicits light percepts in patients blinded by outer retinal diseases. However, individual percepts are highly variable and do not readily assemble into more complex visual images. As a result, the quality of visual information conveyed to patients has been quite limited. To develop more effective stimulation methods that will lead to improved psychophysical outcomes, we are studying how retinal neurons respond to electric stimulation. The situation in the retina is analogous to other neural prosthetic applications in which a better understanding of the underlying neural response may lead to improved clinical outcomes. Here, we determined which element in retinal ganglion cells has the lowest threshold for initiating action potentials. Previous studies suggest multiple possibilities, although all were within the soma/proximal axon region. To determine the actual site, we measured thresholds in a dense two-dimensional grid around the soma/proximal axon region of rabbit ganglion cells in the flat mount preparation. In directionally selective (DS) ganglion cells, the lowest thresholds were found along a small section of the axon, about 40 microm from the soma. Immunochemical staining revealed a dense band of voltage-gated sodium channels centered at the same location, suggesting that thresholds are lowest when the stimulating electrode is closest to the sodium-channel band. The size and location of the low-threshold region was consistent within DS cells, but varied for other ganglion cell types. Analogously, the length and location of sodium channel bands also varied by cell type. Consistent with the differences in band properties, we found that the absolute (lowest) thresholds were also different for different cell types. Taken together, our results suggest that the sodium-channel band is the site that is most responsive to electric stimulation and that differences in the bands underlie the threshold differences we observed.


Neuron | 2005

Directional Selectivity Is Formed at Multiple Levels by Laterally Offset Inhibition in the Rabbit Retina

Shelley I. Fried; Thomas A. Mu¨nch; Frank S. Werblin

The excitatory and inhibitory inputs to directionally selective (DS) ganglion cells are themselves directionally selective. Directionality is achieved because excitation is reduced during null-direction movement along a GABAergic pathway. Inhibition is reduced during preferred-direction movement along a pathway that includes cholinergic synapses. Both excitation and inhibition are made directional by laterally offset inhibitory signals similar to the spatial offset of the direct inhibitory input to the DS cell dendrites. Thus, spatially offset lateral inhibition generates directionality at three different levels in the DS circuitry. We also found that for stimuli falling within the dendritic field, cholinergic input is delivered to the OFF but not the ON dendrites. Cholinergic pathways from outside the dendritic field reach both ON and OFF dendrites, but both of these pathways are normally inactivated by GABAergic synapses.


Journal of Neurophysiology | 2010

Selective Activation of Neuronal Targets With Sinusoidal Electric Stimulation

Daniel K. Freeman; Donald K. Eddington; Joseph F. Rizzo; Shelley I. Fried

Electric stimulation of the CNS is being evaluated as a treatment modality for a variety of neurological, psychiatric, and sensory disorders. Despite considerable success in some applications, existing stimulation techniques offer little control over which cell types or neuronal substructures are activated by stimulation. The ability to more precisely control neuronal activation would likely improve the clinical outcomes associated with these applications. Here, we show that specific frequencies of sinusoidal stimulation can be used to preferentially activate certain retinal cell types: photoreceptors are activated at 5 Hz, bipolar cells at 25 Hz, and ganglion cells at 100 Hz. In addition, low-frequency stimulation (≤25 Hz) did not activate passing axons but still elicited robust synaptically mediated responses in ganglion cells; therefore, elicited neural activity is confined to within a focal region around the stimulating electrode. Our results suggest that sinusoidal stimulation provides significantly improved control over elicited neural activity relative to conventional pulsatile stimulation.


Nature Communications | 2012

Microscopic Magnetic Stimulation of Neural Tissue

Giorgio Bonmassar; Seung-Woo Lee; Daniel K. Freeman; Miloslav Polasek; Shelley I. Fried; John T. Gale

Electrical stimulation is currently used to treat a wide range of cardiovascular, sensory and neurological diseases. Despite its success, there are significant limitations to its application, including incompatibility with magnetic resonance imaging, limited control of electric fields and decreased performance associated with tissue inflammation. Magnetic stimulation overcomes these limitations but existing devices (that is, transcranial magnetic stimulation) are large, reducing their translation to chronic applications. In addition, existing devices are not effective for deeper, sub-cortical targets. Here we demonstrate that sub-millimeter coils can activate neuronal tissue. Interestingly, the results of both modelling and physiological experiments suggest that different spatial orientations of the coils relative to the neuronal tissue can be used to generate specific neural responses. These results raise the possibility that micro-magnetic stimulation coils, small enough to be implanted within the brain parenchyma, may prove to be an effective alternative to existing stimulation devices.


Journal of Neural Engineering | 2011

Multiple components of ganglion cell desensitization in response to prosthetic stimulation

Daniel K. Freeman; Shelley I. Fried

Retinal prostheses aim to restore functional vision to those blinded by outer retinal diseases using electric stimulation of surviving neurons. Previous work indicates that repetitive stimulation with stimuli that activate the synaptic network reduces the sensitivity of retinal neurons to further stimulation. Such desensitization may contribute to the fading of visual percepts over time reported by human subjects. Here, we show that desensitization may be more complex than previously considered. We recorded spike trains from rabbit retinal ganglion cells and found that desensitization persists in the presence of inhibitory blockers (strychnine and picrotoxin), indicating amacrine cell inhibition is not solely responsible for reducing sensitivity in response to electric stimulation. The threshold for direct activation of the ganglion cell changes little during the simultaneous desensitization of the synaptically mediated response, indicating that desensitization likely occurs upstream of the spike generator. In addition to rapid desensitization acting over hundreds of milliseconds (τ = 176.4 ± 8.8 ms), we report the presence of slow acting desensitization with a time course of seconds (τ = 14.0 ± 1.1 s). The time courses of the two components of desensitization that we found are similar to the two phases of brightness fading seen in human subjects. This suggests that the reduction in ganglion cell firing due to desensitization may be responsible for the fading of visual percepts over time in response to prosthetic stimulation.


Journal of Neural Engineering | 2011

Encoding visual information in retinal ganglion cells with prosthetic stimulation

Daniel K. Freeman; Joseph F. Rizzo; Shelley I. Fried

Retinal prostheses aim to restore functional vision to those blinded by outer retinal diseases using electric stimulation of surviving retinal neurons. The ability to replicate the spatiotemporal pattern of ganglion cell spike trains present under normal viewing conditions is presumably an important factor for restoring high-quality vision. In order to replicate such activity with a retinal prosthesis, it is important to consider both how visual information is encoded in ganglion cell spike trains, and how retinal neurons respond to electric stimulation. The goal of the current review is to bring together these two concepts in order to guide the development of more effective stimulation strategies. We review the experiments to date that have studied how retinal neurons respond to electric stimulation and discuss these findings in the context of known retinal signaling strategies. The results from such in vitro studies reveal the advantages and disadvantages of activating the ganglion cell directly with the electric stimulus (direct activation) as compared to activation of neurons that are presynaptic to the ganglion cell (indirect activation). While direct activation allows high temporal but low spatial resolution, indirect activation yields improved spatial resolution but poor temporal resolution. Finally, we use knowledge gained from in vitro experiments to infer the patterns of elicited activity in ongoing human trials, providing insights into some of the factors limiting the quality of prosthetic vision.


Journal of Neural Engineering | 2014

Differential responses to high-frequency electrical stimulation in ON and OFF retinal ganglion cells

Perry Twyford; Changsi Cai; Shelley I. Fried

OBJECTIVE The field of retinal prosthetics for artificial vision has advanced considerably in recent years, however clinical outcomes remain inconsistent. The performance of retinal prostheses is likely limited by the inability of electrical stimuli to preferentially activate different types of retinal ganglion cell (RGC). APPROACH Here we examine the response of rabbit RGCs to high-frequency stimulation, using biphasic pulses applied at 2000 pulses per second. Responses were recorded using cell-attached patch clamp methods, and stimulation was applied epiretinally via a small cone electrode. MAIN RESULTS When prolonged stimulus trains were applied to OFF-brisk transient (BT) RGCs, the cells exhibited a non-monotonic relationship between response strength and stimulus amplitude; this response pattern was different from those elicited previously by other electrical stimuli. When the amplitude of the stimulus was modulated transiently from a non-zero baseline amplitude, ON-BT and OFF-BT cells exhibited different activity patterns: ON cells showed an increase in activity while OFF cells exhibited a decrease in activity. Using a different envelope to modulate the amplitude of the stimulus, we observed the opposite effect: ON cells exhibited a decrease in activity while OFF cells show an increase in activity. SIGNIFICANCE As ON and OFF RGCs often exhibit opposing activity patterns in response to light stimulation, this work suggests that high-frequency electrical stimulation of RGCs may be able to elicit responses that are more physiological than traditional pulsatile stimuli. Additionally, the prospect of an electrical stimulus capable of cell-type specific selective activation has broad applications throughout the fields of neural stimulation and neuroprostheses.


Journal of Neurophysiology | 2013

Responses to pulsatile subretinal electric stimulation: effects of amplitude and duration

Seung-Woo Lee; Donald K. Eddington; Shelley I. Fried

In working to improve the quality of visual percepts elicited by retinal prosthetics, considerable effort has been made to understand how retinal neurons respond to electric stimulation. Whereas responses arising from direct activation of retinal ganglion cells have been well studied, responses arising through indirect activation (e.g., secondary to activation of bipolar cells) are not as well understood. Here, we used cell-attached, patch-clamp recordings to measure the responses of rabbit ganglion cells in vitro to a wide range of stimulus-pulse parameters (amplitudes: 0-100 μA; durations: 0.1-50 ms), applied to a 400-μm-diameter, subretinal-stimulating electrode. The indirect responses generally consisted of multiple action potentials that were clustered into bursts, although the latency and number of spikes within a burst were highly variable. When different parameter pairs representing identical charge levels were compared, the shortest pulse durations generally elicited the most spikes. In addition, latencies were shortest, and jitter was lowest for short pulses. These findings suggest that short pulses are optimum for activation of presynaptic neurons, and therefore, short pulses are more effective for both direct as well as indirect activation.


Journal of Neural Engineering | 2011

The sodium channel band shapes the response to electric stimulation in retinal ganglion cells

Jed Jeng; S Tang; Alyosha Molnar; N. J. Desai; Shelley I. Fried

To improve the quality of prosthetic vision, it is desirable to understand how targeted retinal neurons respond to stimulation. Unfortunately, the factors that shape the response of a single neuron to stimulation are not well understood. A dense band of voltage-gated sodium channels within the proximal axon of retinal ganglion cells is the site most sensitive to electric stimulation, suggesting that band properties are likely to influence the response to stimulation. Here, we examined how three band properties influence sensitivity using a morphologically realistic ganglion cell model in NEURON. Longer bands were more sensitive to short-duration pulses than shorter bands and increasing the distance between band and soma also increased sensitivity. Simulations using the known limits of band length and location resulted in a sensitivity difference of approximately 2. Additional simulations tested how changes to sodium channel conductance within the band influenced threshold and found that the sensitivity difference increased to a factor of nearly 3. This is close to the factor of 5 difference measured in physiological studies suggesting that band properties contribute significantly to the sensitivity differences found between different types of retinal neurons.

Collaboration


Dive into the Shelley I. Fried's collaboration.

Top Co-Authors

Avatar

Joseph F. Rizzo

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Seung-Woo Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald K. Eddington

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Changsi Cai

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge