Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shelly Praveen is active.

Publication


Featured researches published by Shelly Praveen.


Molecular Biology Reports | 2012

MicroRNA regulated defense responses in Triticum aestivum L. during Puccinia graminis f.sp. tritici infection

Om Prakash Gupta; Vipin Permar; Vikas Koundal; U. D. Singh; Shelly Praveen

Plants have evolved diverse mechanism to recognize pathogen attack and triggers defense responses. These defense responses alter host cellular function regulated by endogenous, small, non-coding miRNAs. To understand the mechanism of miRNAs regulated cellular functions during stem rust infection in wheat, we investigated eight different miRNAs viz. miR159, miR164, miR167, miR171, miR444, miR408, miR1129 and miR1138, involved in three different independent cellular defense response to infection. The investigation reveals that at the initiation of disease, accumulation of miRNAs might be playing a key role in hypersensitive response (HR) from host, which diminishes at the maturation stage. This suggests a possible host-fungal synergistic relation leading to susceptibility. Differential expression of these miRNAs in presence and absence of R gene provides a probable explanation of miRNA regulated R gene mediated independent pathways.


RNA | 2012

RNA binding is more critical to the suppression of silencing function of Cucumber mosaic virus 2b protein than nuclear localization.

Inmaculada González; Daria V. Rakitina; Maria Semashko; Michael Taliansky; Shelly Praveen; Peter Palukaitis; John P. Carr; Natalia O. Kalinina; Tomas Canto

Previously, we found that silencing suppression by the 2b protein and six mutants correlated both with their ability to bind to double-stranded (ds) small RNAs (sRNAs) in vitro and with their nuclear/nucleolar localization. To further discern the contribution to suppression activity of sRNA binding and of nuclear localization, we have characterized the kinetics of in vitro binding to a ds sRNA, a single-stranded (ss) sRNA, and a micro RNA (miRNA) of the native 2b protein and eight mutant variants. We have also added a nuclear export signal (NES) to the 2b protein and assessed how it affected subcellular distribution and suppressor activity. We found that in solution native protein bound ds siRNA, miRNA, and ss sRNA with high affinity, at protein:RNA molar ratios ~2:1. Of the four mutants that retained suppressor activity, three showed sRNA binding profiles similar to those of the native protein, whereas the remaining one bound ss sRNA at a 2:1 molar ratio, but both ds sRNAs with 1.5-2 times slightly lower affinity. Three of the four mutants lacking suppressor activity failed to bind to any sRNA, whereas the remaining one bound them at far higher ratios. NES-tagged 2b protein became cytoplasmic, but suppression activity in patch assays remained unaffected. These results support binding to sRNAs at molar ratios at or near 2:1 as critical to the suppressor activity of the 2b protein. They also show that cytoplasmically localized 2b protein retained suppressor activity, and that a sustained nuclear localization was not required for this function.


Transgenic Research | 2010

Silencing potential of viral derived RNAi constructs in Tomato leaf curl virus -AC4 gene suppression in tomato

Shelly Praveen; Suhas Ramesh; Anil Kumar Mishra; Vikas Koundal; Peter Palukaitis

We investigated viral gene suppression in an infected tomato, by transforming it with RNA inhibition (RNAi) constructs derived from same viral gene. To develop RNAi constructs, conserved sequences ranging from 21 to 200 nt of the viral target AC4 gene of various viruses causing the tomato leaf curl disease were chosen. The double-stranded (ds)RNA producing constructs carry the sense and antisense portions of these sequences and are separated by different introns behind a constitutive promoter. We compared the levels of suppression of the viral target gene by transforming four different RNAi constructs with varied arm length of dsRNA. Gene silencing levels of the viral target gene were found to be directly proportional to the arm length of the dsRNA. We observed that dsRNA derived from longer arm-length constructs generating a pool of siRNAs that were more effective in targeting gene silencing. After transformation, one of the RNAi construct having a 21 nt arm-length produced aberrant phenotypes. These phenotypic anomalies may be due to unintended (‘off-target’) host transcript silencing. The unintended host transcript silencing showed modest reversion in the presence of the viral target gene. The findings presented here suggest that the arm length of dsRNA capable of producing a pool of diced siRNAs is more efficient in gene silencing, the effect of off-targeting siRNA is minimized in a pool, and off-targeting silencing can be minimized in the presence of target gene.


Biochemical Genetics | 2008

Role of genetic recombination in the molecular architecture of Papaya ringspot virus.

Satendra K. Mangrauthia; B. Parameswari; Rakesh K. Jain; Shelly Praveen

Papaya ringspot virus (PRSV) has a single-stranded RNA genome and causes severe economic losses both in cucurbits and papaya worldwide. The extent to which the genome of PRSV is shaped by recombination provides an understanding of the molecular evolution of PRSV and helps in studying features such as host specificity, geographic distribution, and its emergence as new epidemics. The PRSV-P-Indian isolate was completely sequenced and compared with 14 other isolates reported from the rest of the world for their phylogenetic survey of recombination events. Cistron-by-cistron sequence comparison and phylogenetic analysis based on full-genome polyprotein showed two distinct groupings of Asian and American isolates, although PRSV-P and W-India clustered along with the American isolates. Recombination sites were found throughout the genomes, except in the small 6K1 protein gene. A significant proportion of recombination hotspots was found in the P1 gene, followed by P3, cylindrical inclusion (CI), and helper component proteinase (HcPro). Correlations between the presence of recombination sites, geographic distribution, and phylogenetic relationship provide an opportunity to establish the molecular evolution and geographic route of PRSV.


PLOS ONE | 2012

Inhibition of the Host Proteasome Facilitates Papaya Ringspot Virus Accumulation and Proteosomal Catalytic Activity Is Modulated by Viral Factor HcPro

Nandita Sahana; Harpreet Kaur; Basavaraj; Fátima Tena; Rakesh K. Jain; Peter Palukaitis; Tomas Canto; Shelly Praveen

The ubiquitin/26S proteasome system plays an essential role not only in maintaining protein turnover, but also in regulating many other plant responses, including plant–pathogen interactions. Previous studies highlighted different roles of the 20S proteasome in plant defense during virus infection, either indirectly through viral suppressor-mediated degradation of Argonaute proteins, affecting the RNA interference pathway, or directly through modulation of the proteolytic and RNase activity of the 20S proteasome, a component of the 20S proteasome, by viral proteins, affecting the levels of viral proteins and RNAs. Here we show that MG132, a cell permeable proteasomal inhibitor, caused an increase in papaya ringspot virus (PRSV) accumulation in its natural host papaya (Carica papaya). We also show that the PRSV HcPro interacts with the papaya homologue of the Arabidopsis PAA (α1 subunit of the 20S proteasome), but not with the papaya homologue of Arabidopsis PAE (α5 subunit of the 20S proteasome), associated with the RNase activity, although the two 20S proteasome subunits interacted with each other. Mutated forms of PRSV HcPro showed that the conserved KITC54 motif in the N-terminal domain of HcPro was necessary for its binding to PAA. Co-agroinfiltration assays demonstrated that HcPro expression mimicked the action of MG132, and facilitated the accumulation of bothtotal ubiquitinated proteins and viral/non-viral exogenous RNA in Nicotiana benthamiana leaves. These effects were not observed by using an HcPro mutant (KITS54), which impaired the HcPro – PAA interaction. Thus, the PRSV HcPro interacts with a proteasomal subunit, inhibiting the action of the 20S proteasome, suggesting that HcPro might be crucial for modulating its catalytic activities in support of virus accumulation.


Journal of General Virology | 2017

ICTV Virus Taxonomy Profile: Potyviridae

Stephen J. Wylie; M. J. Adams; C. Chalam; Jan Kreuze; Juan José López-Moya; Kazusato Ohshima; Shelly Praveen; Frank Rabenstein; Drake C. Stenger; Aiming Wang; Francisco Murilo Zerbini

The Potyviridae is the largest family of RNA plant viruses, members of which have single-stranded, positive-sense RNA genomes and flexuous filamentous particles 680–900 nm long and 11–20 nm wide. There are eight genera, distinguished by the host range, genomic features and phylogeny of the member viruses. Genomes range from 8.2 to 11.3 kb, with an average size of 9.7 kb. Most genomes are monopartite but those of members of the genus Bymovirus are bipartite. Some members cause serious disease epidemics in cultivated plants. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Potyviridae, which is available at www.ictv.global/report/potyviridae.


Molecular Plant Pathology | 2013

The influence of cis-acting P1 protein and translational elements on the expression of Potato virus Y helper-component proteinase (HCPro) in heterologous systems and its suppression of silencing activity.

Fátima Tena Fernández; Inmaculada González; Paula Doblas; César del Olmo Rodríguez; Nandita Sahana; Harpreet Kaur; Francisco Tenllado; Shelly Praveen; Tomas Canto

In the Potyvirus genus, the P1 protein is the first N-terminal product processed from the viral polyprotein, followed by the helper-component proteinase (HCPro). In silencing suppression patch assays, we found that Potato virus Y (PVY) HCPro expressed from a P1-HCPro sequence increased the accumulation of a reporter gene, whereas protein expressed from an HCPro sequence did not, even with P1 supplied in trans. This enhancing effect of P1 has been noted in other potyviruses, but has remained unexplained. We analysed the accumulation of PVY HCPro in infiltrated tissues and found that it was higher when expressed from P1-HCPro than from HCPro sequences. Co-expression of heterologous suppressors increased the steady-state level of mRNA expressed from the HCPro sequence, but not that of protein. This suggests that, in the absence of P1 upstream, either HCPro acquires a conformation that affects negatively its activity or stability, or that its translation is reduced. To test these options, we purified HCPro expressed in the presence or absence of upstream P1, and found no difference in purification pattern and final soluble state. By contrast, alteration of the Kozak context in the HCPro mRNA sequence to favour translation increased partially suppressor accumulation and activity. Furthermore, protein activity was not lower than in protein expressed from P1-HCPro sequences. Thus, a direct role for P1 on HCPro suppressor activity or stability, by influencing its conformation during translation, can be excluded. However, P1 could still have an indirect effect favouring HCPro accumulation. Our data highlight the relevance of cis-acting translational elements in the heterologous expression of HCPro.


Archive | 2013

The influence of cis-acting P1 protein and translational elements on the expression of Potato virus Y HCPro in heterologous systems and its suppression of silencing activity

Fátima Tena; Inmaculada González; Paula Doblas; César del Olmo Rodríguez; Nandita Sahana; Harpreet Kaur; Francisco Tenllado; Shelly Praveen; Tomas Canto

In the Potyvirus genus, the P1 protein is the first N-terminal product processed from the viral polyprotein, followed by the helper-component proteinase (HCPro). In silencing suppression patch assays, we found that Potato virus Y (PVY) HCPro expressed from a P1-HCPro sequence increased the accumulation of a reporter gene, whereas protein expressed from an HCPro sequence did not, even with P1 supplied in trans. This enhancing effect of P1 has been noted in other potyviruses, but has remained unexplained. We analysed the accumulation of PVY HCPro in infiltrated tissues and found that it was higher when expressed from P1-HCPro than from HCPro sequences. Co-expression of heterologous suppressors increased the steady-state level of mRNA expressed from the HCPro sequence, but not that of protein. This suggests that, in the absence of P1 upstream, either HCPro acquires a conformation that affects negatively its activity or stability, or that its translation is reduced. To test these options, we purified HCPro expressed in the presence or absence of upstream P1, and found no difference in purification pattern and final soluble state. By contrast, alteration of the Kozak context in the HCPro mRNA sequence to favour translation increased partially suppressor accumulation and activity. Furthermore, protein activity was not lower than in protein expressed from P1-HCPro sequences. Thus, a direct role for P1 on HCPro suppressor activity or stability, by influencing its conformation during translation, can be excluded. However, P1 could still have an indirect effect favouring HCPro accumulation. Our data highlight the relevance of cis-acting translational elements in the heterologous expression of HCPro.


Virus Genes | 2009

Ambient temperature perception in papaya for papaya ringspot virus interaction

Satendra K. Mangrauthia; Viplendra P. Singh Shakya; Rakesh K. Jain; Shelly Praveen

Temperature dramatically affects the host–virus interaction. Outbreaks of viral diseases are frequently associated with the ambient temperature required for host development. Using papaya as a host and Papaya ringspot virus (PRSV) as a pathogen, we studied the effect of temperature on the intensity of disease symptoms and virus accumulation. The phenotypic expression of symptoms and viral accumulation were found to be maximum at ambient temperature (26–31°C) of papaya cultivation. However, there was a drastic difference, 10°C above and below the ambient temperature. The underlying mechanism of these well-known observations are not yet understood completely; however, these observations might help find answers in RNA silencing mechanism of plants. Since viral-derived silencing suppressor proteins play a significant role in RNA silencing mechanism, here we show that PRSV-derived Helper component proteinase (HC-Pro) protein has an affinity for small RNAs in a temperature-dependent manner. This suggested the probable role of HC-Pro in the temperature-regulated host–virus relationship.


Molecular Biotechnology | 2010

Genomics of Helper Component Proteinase Reveals Effective Strategy for Papaya Ringspot Virus Resistance

Satendra K. Mangrauthia; Priyanka Singh; Shelly Praveen

Papaya ringspot virus (PRSV) causes severe economic losses in both cucurbits and papaya throughout the tropics and subtropics. Development of PRSV-resistant transgenic plants faces a major hurdle in achieving resistance against geographically distinct isolates. One of the major reasons of failing to achieve the broad-spectrum PRSV resistance is the involvement of silencing suppressor proteins of viral origin. Here, based on sequence profile of silencing suppressor protein, HcPro, we show that PRSV-HcPro, acts as a suppressor of RNA silencing through micro RNA binding in a dose- dependent manner. In planta expression of PRSV-HcPro affects developmental biology of plants, suggesting the interference of suppressor protein in micro RNA-directed regulatory pathways of plants. Besides facilitating the establishment of PRSV, it showed strong positive synergism with other heterologous viruses as well. This study provides a strategy to develop effective and stable PRSV-resistant transgenic plants.

Collaboration


Dive into the Shelly Praveen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suneha Goswami

Indian Agricultural Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ranjeet R. Kumar

Indian Agricultural Research Institute

View shared research outputs
Top Co-Authors

Avatar

Satendra K. Mangrauthia

Indian Agricultural Research Institute

View shared research outputs
Top Co-Authors

Avatar

Tomas Canto

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Viswanathan Chinnusamy

Indian Agricultural Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anil Kumar Mishra

Indian Agricultural Research Institute

View shared research outputs
Top Co-Authors

Avatar

Anupam Varma

Indian Agricultural Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kavita Dubey

Indian Agricultural Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge