Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shen-Shu Sung is active.

Publication


Featured researches published by Shen-Shu Sung.


Molecular Pharmacology | 2006

Discovery of a novel Shp2 protein tyrosine phosphatase inhibitor

Liwei Chen; Shen-Shu Sung; M. L Richard Yip; Harshani R. Lawrence; Yuan Ren; Wayne C. Guida; Said M. Sebti; Nicholas J. Lawrence; Jie Wu

Shp2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene. It is involved in growth factorinduced activation of mitogen-activated protein (MAP) kinases Erk1 and Erk2 (Erk1/2) and has been implicated in the pathogenicity of the oncogenic bacterium Helicobacter pylori. Moreover, gain-of-function Shp2 mutations have been found in childhood leukemias and Noonan syndrome. Thus, small molecule Shp2 PTP inhibitors are much needed reagents for evaluation of Shp2 as a therapeutic target and for chemical biology studies of Shp2 function. By screening the National Cancer Institute (NCI) Diversity Set chemical library, we identified 8-hydroxy-7-(6-sulfonaphthalen-2-yl)diazenyl-quinoline-5-sulfonic acid (NSC-87877) as a potent Shp2 PTP inhibitor. Molecular modeling and site-directed mutagenesis studies suggested that NSC-87877 binds to the catalytic cleft of Shp2 PTP. NSC-87877 cross-inhibited Shp1 in vitro, but it was selective for Shp2 over other PTPs (PTP1B, HePTP, DEP1, CD45, and LAR). It is noteworthy that NSC-87877 inhibited epidermal growth factor (EGF)-induced activation of Shp2 PTP, Ras, and Erk1/2 in cell cultures but did not block EGF-induced Gab1 tyrosine phosphorylation or Gab1-Shp2 association. Furthermore, NSC-87877 inhibited Erk1/2 activation by a Gab1-Shp2 chimera but did not affect the Shp2-independent Erk1/2 activation by phorbol 12-myristate 13-acetate. These results identified NSC-87877 as the first PTP inhibitor capable of inhibiting Shp2 PTP in cell cultures without a detectable off-target effect. Our study also provides the first pharmacological evidence that Shp2 mediates EGF-induced Erk1/2 MAP kinase activation.


Journal of Biological Chemistry | 2012

Discovery of Marinopyrrole A (Maritoclax) as a Selective Mcl-1 Antagonist that Overcomes ABT-737 Resistance by Binding to and Targeting Mcl-1 for Proteasomal Degradation

Kenichiro Doi; Rongshi Li; Shen-Shu Sung; Hongwei Wu; Yan Liu; Wanda Manieri; Gowdahalli Krishnegowda; Andy Awwad; Alden Dewey; Xin Liu; Shantu Amin; Chunwei Cheng; Yong Qin; Ernst Schönbrunn; Gary W. Daughdrill; Thomas P. Loughran; Said M. Sebti; Hong-Gang Wang

Background: There is an urgent need to develop small molecule Mcl-1-specific inhibitors for the treatment of Mcl-1-dependent ABT-737/263-resistant cancers. Results: Maritoclax binds to and induces Mcl-1 degradation, thereby leading to Mcl-1-dependent apoptosis and sensitizing leukemia/lymphoma cells to ABT-737. Conclusion: Maritoclax is a novel Mcl-1-specific inhibitor. Significance: Antagonizing Mcl-1 by maritoclax has the potential to prevent and overcome Mcl-1-mediated resistance to ABT-737/263. The anti-apoptotic Bcl-2 family of proteins, including Bcl-2, Bcl-XL and Mcl-1, are well-validated drug targets for cancer treatment. Several small molecules have been designed to interfere with Bcl-2 and its fellow pro-survival family members. While ABT-737 and its orally active analog ABT-263 are the most potent and specific inhibitors to date that bind Bcl-2 and Bcl-XL with high affinity but have a much lower affinity for Mcl-1, they are not very effective as single agents in certain cancer types because of elevated levels of Mcl-1. Accordingly, compounds that specifically target Mcl-1 may overcome this resistance. In this study, we identified and characterized the natural product marinopyrrole A as a novel Mcl-1-specific inhibitor and named it maritoclax. We found that maritoclax binds to Mcl-1, but not Bcl-XL, and is able to disrupt the interaction between Bim and Mcl-1. Moreover, maritoclax induces Mcl-1 degradation via the proteasome system, which is associated with the pro-apoptotic activity of maritoclax. Importantly, maritoclax selectively kills Mcl-1-dependent, but not Bcl-2- or Bcl-XL-dependent, leukemia cells and markedly enhances the efficacy of ABT-737 against hematologic malignancies, including K562, Raji, and multidrug-resistant HL60/VCR, by ∼60- to 2000-fold at 1–2 μm. Taken together, these results suggest that maritoclax represents a new class of Mcl-1 inhibitors, which antagonizes Mcl-1 and overcomes ABT-737 resistance by targeting Mcl-1 for degradation.


Journal of Biological Chemistry | 2011

The BH3 α-Helical Mimic BH3-M6 Disrupts Bcl-XL, Bcl-2, and MCL-1 Protein-Protein Interactions with Bax, Bak, Bad, or Bim and Induces Apoptosis in a Bax- and Bim-dependent Manner

Aslamuzzaman Kazi; Jiazhi Sun; Kenichiro Doi; Shen-Shu Sung; Yoshinori Takahashi; Hang Yin; Johanna M. Rodriguez; Jorge Becerril; Norbert Berndt; Andrew D. Hamilton; Hong-Gang Wang; Said M. Sebti

A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-XL, and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-XL and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-XL, Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-XL/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-XL, Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612.


Cancer Research | 2008

A Small-Molecule E2F Inhibitor Blocks Growth in a Melanoma Culture Model

Yihong Ma; Courtney A. Kurtyka; Sandhya Boyapalle; Shen-Shu Sung; Harshani R. Lawrence; Wayne C. Guida; W. Douglas Cress

HLM006474 was identified using a computer-based virtual screen and the known crystal structure of the DNA-bound E2F4/DP2 heterodimer. Treatment of multiple cell lines with HLM006474 resulted in the loss of intracellular E2F4 DNA-binding activity as measured by electrophoretic mobility shift assay within hours. Overnight exposure to HLM006474 resulted in down-regulation of total E2F4 protein as well as known E2F targets. The effects of HLM006474 treatment on different cell lines varied but included a reduction in cell proliferation and an increase in apoptosis. HLM006474 induced apoptosis in a manner distinct from cisplatin and doxorubicin. E2F4-null mouse embryonic fibroblasts were less sensitive than wild-type counterparts to the apoptosis-inducing activity of the compound, revealing its biological specificity. A375 cells were extremely sensitive to the apoptosis-inducing activity of the compound in two-dimensional culture, and HLM006474 was a potent inhibitor of melanocytes proliferation and subsequent invasion in a three-dimensional tissue culture model system. Together, these results suggest that interference with E2F activity using small molecules may have clinical application in cancer therapy.


Journal of Chemical Information and Modeling | 2008

Computational Validation of the Importance of Absolute Stereochemistry in Virtual Screening

Wesley H. Brooks; Kenyon G. Daniel; Shen-Shu Sung; Wayne C. Guida

Consideration of stereochemistry early in the identification and optimization of lead compounds can improve the efficiency and efficacy of the drug discovery process and reduce the time spent on subsequent drug development. These improvements can result by focusing on specific enantiomers that have the desired potential therapeutic effect (eutomers), while removing from consideration enantiomers that may have no, or even undesirable, effects (distomers). A virtual screening campaign that correctly takes stereochemical information into account can, in theory, be utilized to provide information about the relative binding affinities of enantiomers. Thus, the proper enumeration of the relevant stereoisomers in general, and enantiomeric pairs in particular, of chiral compounds is crucial if one is to use virtual screening as an effective drug discovery tool. As is obvious, in cases where no stereochemical information is provided for chiral compounds in a 2D chemical database, then each possible stereoisomer should be generated for construction of the subsequent 3D database to be used for virtual screening. However, acute problems can arise in 3D database construction when relative stereochemistry is encoded in a 2D database for a chiral compound containing multiple stereogenic atoms but absolute stereochemistry is not implied. In this case, we report that generation of enantiomeric pairs is imperative in database development if one is to obtain accurate docking results. A study is described on the impact of the neglect of enantiomeric pairs on virtual screening using the human homolog of murine double minute 2 (MDM2) protein, the product of a proto-oncogene, as the target. Docking in MDM2 with GLIDE 4.0 was performed using the NCI Diversity Set 3D database and, for comparison, a set of enantiomers we created corresponding to mirror image structures of the single enantiomers of chiral compounds present in the NCI Diversity Set. Our results demonstrate that potential lead candidates may be overlooked when databases contain 3D structures representing only a single enantiomer of racemic chiral compounds.


Journal of Medicinal Chemistry | 2012

Fragment-based and structure-guided discovery and optimization of Rho kinase inhibitors.

Rongshi Li; Mathew P. Martin; Yan Liu; Binglin Wang; Ronil Patel; Jin Yi Zhu; Nan Sun; Roberta Pireddu; Nicholas J. Lawrence; Jiannong Li; Eric B. Haura; Shen-Shu Sung; Wayne C. Guida; Ernst Schönbrunn; Said M. Sebti

Using high concentration biochemical assays and fragment-based screening assisted by structure-guided design, we discovered a novel class of Rho-kinase inhibitors. Compound 18 was equipotent for ROCK1 (IC(50) = 650 nM) and ROCK2 (IC(50) = 670 nM), whereas compound 24 was more selective for ROCK2 (IC(50) = 100 nM) over ROCK1 (IC(50) = 1690 nM). The crystal structure of the compound 18-ROCK1 complex revealed that 18 is a type 1 inhibitor that binds the hinge region in the ATP binding site. Compounds 18 and 24 inhibited potently the phosphorylation of the ROCK substrate MLC2 in intact human breast cancer cells.


Bioorganic & Medicinal Chemistry Letters | 2009

Identification of a disruptor of the MDM2-p53 protein–protein interaction facilitated by high-throughput in silico docking

Harshani R. Lawrence; Zhenyu Li; M. L Richard Yip; Shen-Shu Sung; Nicholas J. Lawrence; Mark L. McLaughlin; Gregory J. McManus; Michael J. Zaworotko; Said M. Sebti; Jiandong Chen; Wayne C. Guida

NSC 333003 has been identified from the NCI Diversity Set as an inhibitor of the MDM2-p53 protein-protein interaction by in silico docking (virtual screening). Its potency and chemical characteristics render it well suited for lead optimization studies that can result in more potent analogs with improved drug-like properties. Its synthesis was achieved using an acid catalyzed condensation reaction from commercially available benzothiazole hydrazine and pyridyl phenyl ketone in refluxing methanol. Stereochemical implications for this compound are described.


MedChemComm | 2012

Pyridylthiazole-based ureas as inhibitors of Rho associated protein kinases (ROCK1 and 2)

Roberta Pireddu; Kara D. Forinash; Nan N. Sun; Mathew P. Martin; Shen-Shu Sung; Brian G. Alexander; Jin-Yi Zhu; Wayne C. Guida; Ernst Schönbrunn; Said M. Sebti; Nicholas J. Lawrence

Potent ROCK inhibitors of a new class of 1-benzyl-3-(4-pyridylthiazol-2-yl)ureas have been identified. Remarkable differences in activity were observed for ureas bearing a benzylic stereogenic center. Derivatives with hydroxy, methoxy and amino groups at the meta position of the phenyl ring give rise to the most potent inhibitors (low nM). Substitutions at the para position result in substantial loss of potency. Changes at the benzylic position are tolerated resulting in significant potency in the case of methyl and methylenehydroxy groups. X-Ray crystallography was used to establish the binding mode of this class of inhibitors and provides an explanation for the observed differences of the enantiomer series. Potent inhibition of ROCK in human lung cancer cells was shown by suppression of the levels of phosphorylation of the ROCK substrate MYPT-1.


Biochemical Pharmacology | 2010

Inhibition of cellular Shp2 activity by a methyl ester analog of SPI-112

Liwei Chen; Daniele Pernazza; Latanya M. Scott; Harshani R. Lawrence; Yuan Ren; Yunting Luo; Xin Wu; Shen-Shu Sung; Wayne C. Guida; Said M. Sebti; Nicholas J. Lawrence; Jie Wu

The protein tyrosine phosphatase (PTP) Shp2 (PTPN11) is an attractive target for anticancer drug discovery because it mediates growth factor signaling and its gain-of-function mutants are causally linked to leukemias. We previously synthesized SPI-112 from a lead compound of Shp2 inhibitor, NSC-117199. In this study, we demonstrated that SPI-112 bound to Shp2 by surface plasmon resonance (SPR) and displayed competitive inhibitor kinetics to Shp2. Like some other compounds in the PTP inhibitor discovery efforts, SPI-112 was not cell permeable, precluding its use in biological studies. To overcome the cell permeation issue, we prepared a methyl ester SPI-112 analog (SPI-112Me) that is predicted to be hydrolyzed to SPI-112 upon entry into cells. Fluorescence uptake assay and confocal imaging suggested that SPI-112Me was taken up by cells. Incubation of cells with SPI-112Me inhibited epidermal growth factor (EGF)-stimulated Shp2 PTP activity and Shp2-mediated paxillin dephosphorylation, Erk1/2 activation, and cell migration. SPI-112Me treatment also inhibited Erk1/2 activation by a Gab1-Shp2 chimera. Treatment of Shp2(E76K) mutant-transformed TF-1 myeloid cells with SPI-112Me resulted in inhibition of Shp2(E76K)-dependent cell survival, which is associated with inhibition of Shp2(E76K) PTP activity, Shp2(E76K)-induced Erk1/2 activation, and Bcl-XL expression. Furthermore, SPI-112Me enhanced interferon-gamma (IFN-gamma)-stimulated STAT1 tyrosine phosphorylation, ISRE-luciferase reporter activity, p21 expression, and the anti-proliferative effect. Thus, the SPI-112 methyl ester analog was able to inhibit cellular Shp2 PTP activity.


Journal of Pharmacology and Experimental Therapeutics | 2015

The Apoptotic Mechanism of Action of the Sphingosine Kinase 1 Selective Inhibitor SKI-178 in Human Acute Myeloid Leukemia Cell Lines

Taryn E. Dick; Jeremy A. Hengst; Todd E. Fox; Ashley L. Colledge; Vijay P. Kale; Shen-Shu Sung; Arun K. Sharma; Shantu Amin; Thomas P. Loughran; Mark Kester; Hong-Gang Wang; Jong K. Yun

We previously developed SKI-178 (N′-[(1E)-1-(3,4-dimethoxyphenyl)ethylidene]-3-(4-methoxxyphenyl)-1H-pyrazole-5-carbohydrazide) as a novel sphingosine kinase-1 (SphK1) selective inhibitor and, herein, sought to determine the mechanism-of-action of SKI-178–induced cell death. Using human acute myeloid leukemia (AML) cell lines as a model, we present evidence that SKI-178 induces prolonged mitosis followed by apoptotic cell death through the intrinsic apoptotic cascade. Further examination of the mechanism of action of SKI-178 implicated c-Jun NH2-terminal kinase (JNK) and cyclin-dependent protein kinase 1 (CDK1) as critical factors required for SKI-178–induced apoptosis. In cell cycle synchronized human AML cell lines, we demonstrate that entry into mitosis is required for apoptotic induction by SKI-178 and that CDK1, not JNK, is required for SKI-178–induced apoptosis. We further demonstrate that the sustained activation of CDK1 during prolonged mitosis, mediated by SKI-178, leads to the simultaneous phosphorylation of the prosurvival Bcl-2 family members, Bcl-2 and Bcl-xl, as well as the phosphorylation and subsequent degradation of Mcl-1. Moreover, multidrug resistance mediated by multidrug-resistant protein1 and/or prosurvival Bcl-2 family member overexpression did not affect the sensitivity of AML cells to SKI-178. Taken together, these findings highlight the therapeutic potential of SKI-178 targeting SphK1 as a novel therapeutic agent for the treatment of AML, including multidrug-resistant/recurrent AML subtypes.

Collaboration


Dive into the Shen-Shu Sung's collaboration.

Top Co-Authors

Avatar

Said M. Sebti

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Wayne C. Guida

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shantu Amin

Penn State Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Hong-Gang Wang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberta Pireddu

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Kenichiro Doi

Penn State Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernst Schönbrunn

University of South Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge